Summary of Findings

LAS VEGAS NFL STADIUM SITES - TRAFFIC ASSESSMENT

Purpose

» A major development like an NFL stadium will have regional transportation implications, which should be approached proactively, rather than reactively

» Our goal - to determine the high-level range of state highway improvement needs that can support a new stadium, as well as future regional transportation needs.

» Answer the question - What projects on state-maintained roadways can be considered for acceleration to improve access and mobility to a stadium site?

Approach

- **Trip Generation:** estimate the total number of additional vehicles expected on the roadway network
- **Mode Choice:** predict how attendees are traveling the event
- **Traffic Assignment:** decide what routes people will take to the stadium
- **Determination of Traffic Effects:** understand what roadways may be more constrained than others and the necessary improvements

» Two preferred stadium sites (shown on the map here)

» Determine how trips are made (car, bus/shuttle, bike, walk) and what roads they will use

» Assess the traffic effects on state highways (2019 and 2035/Sunday and Monday nights)

» Inventory planned and programmed improvements in the stadium sites vicinity
Summary of Findings
LAS VEGAS NFL STADIUM SITES - TRAFFIC ASSESSMENT

Advancing Projects
Projects that may be considered for acceleration include:
» Addition of HOV interchanges on I-15 (Harmon Ave, Hacienda Ave)
» I-15 and I-215 operational improvements, including HOV lanes and interchange reconstruction projects (I-15/Tropicana Ave)
» Monorail extension to Mandalay Bay, and pedestrian bridge/walkway extensions to preferred stadium site (by others, with opportunity for NDOT collaboration on NEPA, preliminary engineering, and ROW)
All projects are identified from existing plans or programs, with some project elements already underway (e.g., planning, NEPA).

Next Steps
Once a preferred stadium site is selected, follow-on studies to comprehensively understand transportation improvements needs as part of the stadium development process include:
» Traffic impact analysis
» Parking needs analysis
» Traffic management plan
» Plan for transit expansion during special events (by others)

Game days and other major events could add 15,000 to 18,000 additional vehicles to the roadway system
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of Findings</td>
<td></td>
</tr>
<tr>
<td>Introduction and Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Potential Stadium Sites and Affected Roadways</td>
<td>2</td>
</tr>
<tr>
<td>Stadium-Related Traffic Assessment</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Trip Generation and Mode Choice</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Traffic Assignment</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 Baseline Scenarios</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2 Typical Days</td>
<td>5</td>
</tr>
<tr>
<td>2.2.3 Study Segments</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Determination of Traffic Effects</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Effects by Preferred Stadium Sites</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Order-of-Magnitude Traffic Effect Assessment</td>
<td>16</td>
</tr>
<tr>
<td>2.6 Traffic Effects of Each Site</td>
<td>16</td>
</tr>
<tr>
<td>Improvement Needs on the Regional Transportation System</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Leveraging Planned and Programmed Projects</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Project Development Process</td>
<td>24</td>
</tr>
<tr>
<td>Recommendations and Next Steps</td>
<td>25</td>
</tr>
<tr>
<td>4.1 NDOT Accomplishments</td>
<td>25</td>
</tr>
<tr>
<td>4.2 Leveraging Other Improvements</td>
<td>26</td>
</tr>
<tr>
<td>4.3 Recommendations for Advancing Projects</td>
<td>26</td>
</tr>
<tr>
<td>References</td>
<td>29</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>Appendix A: Trip Generation</td>
<td></td>
</tr>
<tr>
<td>Appendix B: Baseline Traffic Analysis</td>
<td></td>
</tr>
<tr>
<td>Appendix C: Inventory of Planned and Programmed Projects</td>
<td></td>
</tr>
</tbody>
</table>

This document was prepared for NDOT by CH2M specialists in planning, travel demand modeling, traffic operations engineers, economic analysts, and project development and implementation.
SECTION 1

Introduction and Overview

Las Vegas, Nevada is under consideration as a potential location for the development of a sports stadium complex to support a National Football League (NFL) team. This stadium would seat approximately 65,000 fans, and be used for playing home games during the NFL season; as well as host other professional, collegiate, and amateur sports, concerts, and other major events.

More than one-third of Las Vegas’ local economy is dependent on the region’s leisure and hospitality industry and its 42 million annual patrons (LVCVA 2015). Development of a new NFL stadium would be an attraction for locals and visitors alike.

1.1 Purpose

This traffic assessment was commissioned by the Nevada Department of Transportation (NDOT) to provide a high-level overview of stadium traffic effects on state-maintained roadways and to understand opportunities that address potential traffic demands. While there are some similarities, this assessment is not a typical traffic impact study (TIS) that assesses project-related deficiencies to develop a specific list of mitigation measures. A more detailed TIS will need to be submitted by the stadium development team once the preferred site has been selected and a site plan developed. Instead, this report summarizes a non-traditional high-level evaluation of traffic effects and recommendations for accelerating transportation projects that have already been planned/programmed or are in the conceptual phase. The overarching goal is to determine the high-level range of state highway improvement needs in this region that can be accelerated or initiated to support a new stadium. Other potential improvement needs (e.g., transit, local streets, pedestrian and bicycle facilities) are addressed as well.

1.2 Background

NDOT maintains portions of the regional freeway system and major arterials in the Las Vegas valley. Although the Las Vegas region is not new to addressing transportation concerns with hosting major high-volume events, the development of a new NFL stadium will invariably affect the performance and operations of the regional roadway network during special events.

Based on experiences in other cities, it is typical for a stadium developer to construct transportation improvements in the immediate area surrounding the stadium, including addressing such issues as access, parking, and circulation in and out of the stadium site. NDOT plans for and is interested in transportation solutions that meet regional demands. This traffic assessment considers transportation projects from various sources, including the Statewide Transportation Improvement Program (STIP, short-term), Regional Transportation Plan (RTP, long term), the Transportation Investment

PURPOSE

Non-traditional high-level evaluation of traffic effects and resultant order-of-magnitude investment necessary to improve state-maintained roadways.

A major development like an NFL stadium will have regional transportation implications, which should be approached proactively, rather than reactively.
Business Plan (TIBP), projects that may be funded contingent on the continuation of Fuel Revenue Indexing in Clark County (FRI-2 Ballot Question No. 5, November 2016) and other modes of regional transportation such as transit, high-speed rail and extensions to the Las Vegas Monorail. It is recognized that these projects have various project sponsors and differing timelines for project development and construction, but they present an opportunity for collaboration. The timeline for major freeway improvements can traditionally stretch 5 to 10 years to complete planning, National Environmental Policy Act (NEPA), design, right-of-way acquisition, and construction.

1.3 Potential Stadium Sites and Affected Roadways

Seven candidate stadium sites were initially under consideration by the stadium developer and used as the starting point for this analysis. Those seven sites illustrated in Figure 1-1 are listed below:

- Bali Hai Golf Course Site
- Russell Road Site
- Fertitta Site
- UNLV, Thomas and Mack Center Site
- Wynn Golf Course Site
- MGM Rock in Rio Site
- Cashman Field Site

While they are all located within the metropolitan core, each site was found to have different opportunities and issues related to transportation and other factors. As of September 2016, the Bali Hai Golf Course and Russell Road sites have been identified by the Developer as the preferred options, with the Russell Road site as the preferred choice. The analysis provided here focuses on both of these two sites since a formal site selection has not been announced.

Figure 1-1 also illustrates (dark blue lines) those roadways under NDOT’s jurisdiction that were considered to be the corridors that are most likely be affected by either of the two stadium locations. These corridors are the primary focus of this analysis. The light blue lines show the broader network of state-maintained roadways in the study area.

Note that the freeway analysis was focused on the mainline lanes only. Express lanes, High Occupancy Vehicle (HOV), and Collector-Distributor (C-D) roads are important parts of the freeway system, but analysis at that level of detail is more appropriate for future, more detailed studies.
Figure 1-1. Study Area Map
SECTION 2
Stadium-Related Traffic Assessment

The proposed stadium is expected to seat 65,000 people. To understand the effects of a sold-out event on the regional transportation system, the analysis followed a series of steps to determine the effects of stadium traffic, as illustrated in Figure 2-1. This is a planning level analysis and these assumptions will be refined upon final site selection, site plan, and a discussion of planned accommodations.

Figure 2-1. Traffic Assessment Steps

2.1 Trip Generation and Mode Choice

The first step is estimating the number of trips that will be generated by a stadium with an assumed capacity of 65,000 seats was to consider the various modal choices, or the means of getting to the stadium. For this step, trip generation assumptions (the number of new trips) were based on statistics from other NFL stadiums in similar urban environments, paired with the uniqueness of Las Vegas valley and local knowledge of the candidate sites’ locations within the regional transportation system (i.e., proximity to the Las Vegas Strip and surrounding transportation facilities).

In Las Vegas, attendees are expected to travel to the game in one of four ways:

1. Automobile;
2. Transit or shuttles;
3. Walking or biking; or
4. Other, such as taxis, limos, or ride-share services like Uber.

Each of these options carry a different number of people per vehicle. For example, a car may average three persons, while a bus may hold more than 40. These assumptions on transportation choice, combined with number of persons per mode, equates to a total number of vehicles traveling to and from the stadium. Another important consideration in trip generation is the high percentage of event attendees (estimated at 40 to 50 percent) that are assumed to be visitors, primarily staying in the Resort Corridor. Visitors are more likely to take transit or other non-automobile modes.

\[1\] 65,000 seats was used for the analysis. A modest increase (to 70,000 seats) would not have a material effect on the results and conclusions.
While considering the 7 potential stadium sites, it was estimated that game days and other major events could add 15,000 to 18,000 additional vehicles to the roadway system. The number of new vehicle trips generated for the Bali Hai and the Russell Road sites is approximately 16,000 trips. Detailed data are provided in Appendix A. The estimates of anticipated new vehicle trips reflect availability of mode choices. These estimates of trips do not account for ancillary trips such as deliveries, freight, etc. Those trips are relatively minor compared to the anticipated special event trips.

2.2 Traffic Assignment

2.2.1 Baseline Scenarios

The traffic assignment step had multiple elements. Before considering the effects of new stadium traffic, it was first important to understand the expected performance of the street network without the stadium in place. This “baseline scenario” (without the stadium) was studied using three comparative years:

- **Existing Conditions (Year 2015):** establishes the current level of traffic and mobility conditions in the study area, using existing (available) traffic counts.
- **Baseline (Year 2019):** represents the traffic conditions expected in 2019, which is the anticipated opening year of the stadium and includes planned improvements anticipated to be complete by then.
- **Baseline (Year 2035):** represents the traffic conditions expected in 2035 without the stadium, accounting for all planned improvements; this time period evaluates the long-term effects of stadium-related traffic on the roadway network.

The RTC of Southern Nevada’s travel demand model (RTC, 2016) was used to determine the baseline scenario for years 2019 and 2035, which includes all planned improvements in the region that are expected to be complete in those timeframes, and uses that future street network to forecast transportation conditions. As the regional travel demand model is comprised of all planned land uses and improvements included in the Regional Transportation Plan (RTP), it is therefore consistent and reflects all of the approved transportation plans of NDOT, RTC of Southern Nevada, Clark County, and the cities of Las Vegas, North Las Vegas, and Henderson.

The **RTC travel demand model** includes the region’s roadway and transit networks, paired with population and employment data to calculate the expected demand for transportation facilities. Within the model, mathematical equations are used to represent each person’s trip decision-making process: where and when are they going, how will they get there, why are they traveling, and what mode/route will they take to make the trip? The model results for these individual choices are combined to understand the impact and average travel times that all these vehicles have on the roadway system.

2.2.2 Typical Days

The analysis for the baseline scenario was conducted for a weekday evening game or concert event and a Sunday afternoon NFL game.

- **Weekday PM:** is the worst case scenario. A late afternoon traffic pattern would include normal afternoon peak commuter traffic combined with the added stadium-related trips.
- **Sunday PM:** reflects Sunday game day traffic, compounded with tourists leaving town from a weekend visit to Las Vegas. This traffic is generally concentrated in the Resort Corridor/I-15 South area.
2.2.3 Study Segments

The state-maintained corridors under review in this analysis included three freeway corridors (I-15, I-515/US 95, and I-215/Airport Connector) and segments of three arterials (Flamingo Road, Tropicana Avenue, and Russell Road).

Each roadway corridor was split into a series of segments to isolate traffic effects, resulting in 35 total segments. These corridor segments are illustrated in Figure 2-2.
Figure 2-2. Study Corridor Segments
2.3 Determination of Traffic Effects

The determination of traffic effects for each candidate stadium site followed four steps, as illustrated in Figure 2-3.

Figure 2-3. Traffic Effects Determination

1. Determine Traffic Volumes

For the existing and baseline year scenarios, average daily traffic (ADT) and peak hour volumes were identified for each segment, each year, and each day (Table 2-1). Existing year ADT comes from NDOT traffic counts for 2015 (NDOT, 2016). Existing and projected peak traffic volumes are from the RTC travel demand model (RTC, 2016).

2. Determine Affected Segments

For each of the two stadium sites, those segments that are most likely to gain a significant amount of traffic on event days were selected as the focus of that site’s analysis. The segments were determined by considering the likely origins for stadium traffic, and the route or routes they would most likely use. Trips included local residential trips, resort corridor trips, and airport trips. Capacity estimates were prepared for the affected segments.

3. Conduct Volume-to-Capacity Analysis

The projected traffic volumes and capacities were used to calculate the volume/capacity (V/C) ratio for each roadway segment. A V/C ratio of 1.0 roadway operating approximately “at capacity,” although many roadways have volumes greater than capacity – they operate under congested conditions. The following graphics are summaries of conditions without the stadium-related trips (details are provided in Appendix B):

- **Figure 2-4** – 2019 Weekday PM Baseline Scenario
- **Figure 2-5** – 2019 Sunday PM Baseline Scenario
- **Figure 2-6** – 2035 Weekday PM Baseline Scenario
- **Figure 2-7** – 2035 Sunday PM Baseline Scenario

4. Assess Stadium-Related Trip Effects

The last step was to calculate the increase in V/C ratios associated with each of the two stadium sites. For the affected segments identified in Step 2, the number of vehicles to/from each site was determined. From there, the change in V/C ratio was calculated. These results are provided in Section 2.4.

<table>
<thead>
<tr>
<th>Table 2-1. Traffic Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
</tr>
<tr>
<td>Existing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Stadium</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Figure 2-4. 2019 Weekday PM Baseline Scenario (without stadium-related trips)
Figure 2-5. 2019 Sunday PM Baseline Scenario (without stadium-related trips)
Figure 2-6. 2035 Weekday PM Baseline Scenario (without stadium-related trips)

Note: The 2035 baseline transportation network assumes all planned projects in the RTP are complete.
Figure 2-7. 2035 Sunday PM Baseline Scenario (without stadium-related trips)

Note: The 2035 baseline transportation network assumes all planned projects in the RTP are complete.
2.4 Effects by Preferred Stadium Sites

The evaluations for the two preferred stadium sites are presented in Figures 2-8 and 2-9. These two figures illustrate the relative congestion levels associated with stadium traffic on NDOT-maintained roadways, based on the anticipated increases in the V/C for the defined roadway segments. The maps show data on a combination of 2019 and 2035. The combination of the two years was used to capture both opening year and the longer-term effects when other planned and programmed projects will have been constructed.

Table 2-2 is a summary of the NDOT-maintained roadway segments that are anticipated to be most affected by the two potential stadium sites.

Table 2-2. Affected NDOT-Maintained Roadways for Each Stadium Site

<table>
<thead>
<tr>
<th>Site</th>
<th>Freeways</th>
<th>Interchanges</th>
<th>Local Streets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bali Hai Golf Course Site</td>
<td>• I-15 from I-215 to Flamingo Road
• I-215 from Decatur Road to Airport Connector
• Airport Connector north of I-215</td>
<td>• I-15/Russell Road
• I-15/Tropicana Avenue
• I-15/I-215
• I-215/Las Vegas Boulevard</td>
<td>• Russell Road from Valley View to I-15
• Tropicana Avenue from Dean Martin to Las Vegas Boulevard</td>
</tr>
<tr>
<td>Russell Road Site</td>
<td>• I-15 from I-215 to Flamingo Road
• I-215 from Decatur Road to Airport Connector
• Airport Connector north of I-215</td>
<td>• I-15/Russell Road
• I-15/Tropicana Avenue
• I-15/I-215</td>
<td>• Russell Road from Valley View to I-15
• Tropicana Avenue from Dean Martin to Las Vegas Boulevard</td>
</tr>
</tbody>
</table>

Note that the Bali Hai site is constrained on three sides: McCarran International Airport (east), I-15 (west), and the UPRR corridor (south) – all of which limit access to the site. This may result in higher levels of congestion at spot locations near the site, as opposed to the Russell Road location, which may experience a greater dispersion of traffic, particularly to the west.
Figure 2-8. 2019 and 2035 Traffic Effects of Bali Hai Stadium Location

Note: The 2035 baseline transportation network assumes all planned projects in the RTP are complete.
Figure 2-9. 2019 and 2035 Traffic Effects of Russell Road Stadium Location

Note: The 2035 baseline transportation network assumes all planned projects in the RTP are complete.
2.5 Order-of-Magnitude Traffic Effect Assessment

Based on the type of facility (freeway, interchange, freeway mainline, major arterial) and level of V/C increase anticipated for each segment, an order-of-magnitude level of traffic effects was determined for the two stadium sites (Table 2-3).

For example, a congested freeway which experiences a 20 percent or higher V/C increase with stadium traffic was determined to be the worst case scenario. On the other end of the spectrum, an uncongested arterial which will add less than 10 percent traffic from a stadium site is not likely to dramatically affect traffic operations, and therefore the level of traffic effects of the stadium development on that roadway was determined to be low.

Table 2-3. Degree of Traffic Effects

<table>
<thead>
<tr>
<th>Facility</th>
<th>Baseline V/C</th>
<th>V/C Increase</th>
<th>0 to 10%</th>
<th>10% to 20%</th>
<th>20% or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway Segment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 to 0.8</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8 to 1.0</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 to 1.1</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 and up</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Arterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 to 0.8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8 to 1.0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 to 1.1</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 and up</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 to 0.8</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8 to 1.0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 to 1.1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 and up</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scale: 0: no effects 10: greatest effects

Those underperforming segments with the highest ability to impede reliable travel offer the greatest risk to the transportation system and are a higher priority to address. Those segments that are not likely to experience much change in traffic are lower risk and can be addressed in a longer timeframe or by other projects.

2.6 Traffic Effects of Each Site

The traffic effects were compiled by site on each of the 25 freeway segments and 10 arterial segments. For each segment, a relative traffic effect, on a scale from 0 to 10, was assessed, as described in Table 2-3. The freeway results (by system component and overall) and arterials were summarized separately. The results for the two preferred sites, Russell Road and Bali Hai, are identical at this level of analysis.
SECTION 3

Improvement Needs on the Regional Transportation System

The traffic assessment builds upon the already planned transportation improvements in the region, in addition to projects that are in concept or idea stage that have not yet been fully developed or documented in any official study. The next step in the process was to determine the level of improvement needed on the state-maintained roadways and other facilities (local street, transit, non-motorized) to address the addition of event traffic – project types, schedule, and planning-level costs. A key consideration was the potential to leverage other projects “in the pipeline” that would be beneficial to be accelerated or enhanced to address stadium traffic needs, as the stadium necessitates acceleration of certain projects that could potentially provide relief and can be implemented in a reasonable timeframe ahead or shortly after the stadium’s opening in 2019. The improvement needs described in this section address areas where the addition of stadium traffic will negatively affect traffic conditions.

3.1 Leveraging Planned and Programmed Projects

This step in the process inventoried the planned and programmed projects that are under active study and project development in the Las Vegas valley. Appendix C is a detailed listing, and Figure 3-1 and Figure 3-2 are graphical views of the projects in the vicinity of the two high-priority stadium sites.

These projects are at varying levels of the project development stage (planning, NEPA, design, construction) and are dependent on funding and implementation by different entities (e.g., NDOT, RTC, Clark County). Together they represent the range of anticipated multimodal transportation improvements that are most likely to be completed over next 20 years:

- Figure 3-1 includes projects in the Statewide Transportation Improvement Program (STIP), a five-year program of projects that have been funded; and the Regional Transportation Plan (RTP), a 20-year program of projects that are expected, but with a range of funding availability.

- Figure 3-2 illustrates those projects proposed to be funded under the Fuel Revenue Index 2 (FRI-2) which includes other projects that are under consideration, and if passed by the voters at the ballot box, will generate substantial funding to complete hundreds of projects in Southern Nevada.

In addition, Figure 3-3 and Figure 3-4 shows other projects that are not yet programmed but recommended, or in the idea stage, from current planning efforts, including RTC’s Transportation Investment Business Plan (TIBP).
Figure 3-1. Planned and Programmed Projects in the Vicinity of the Stadium Sites

Las Vegas NFL Stadium Sites Traffic Assessment

Planned and Programmed Improvements (STIP and RTP)

- Meade Ave HOV Direct Access Ramp (RTP)
- Flamingo Rd BRT improvements (STIP/RTP)
- Harmon Ave HOV Direct Access Ramp (RTP)
- Tropicana Ave arterial improvements (STIP)
- Valley View Blvd/Russell Rd improvement (STIP)
- Hacienda Ave HOV Direct Access Ramp (RTP)

Implementation Phasing
- Green: Short-Term (1-5 yrs)
- Blue: Long-Term (6-20 years)

Improvement Type
- Grey: Developer Preferred Sites
- Purple: Freeway
- Grey: Street
- Green: Las Vegas Monorail
- Purple: Private Tram

Program Description
- STIP: Statewide Transportation Improvement Program; 5-year look ahead of programmed projects with funding already allocated
- RTP: Regional Transportation Program; 20-year outlook of all planned improvements, with varying stages of project development and funding availability

- I-15/SR 405 Interchange Improvement
- Blue Diamond HOV Direct Access Ramp (RTP)
- Various road and ramp improvements and upgrades
- Xpress West high-speed rail (to be developed by a private entity)
Figure 3-2. Proposed FRI-2 Projects in the Vicinity of the Stadium Sites
Fuel Revenue Indexing (FRI) is providing the necessary funds to move forward with transportation projects that will benefit thousands of residents and visitors every day. Each time a motorist fills up their vehicle with gas, FRI funds are generated (approximately 4 cents per day for the average motorist).

FRI-1 refers to the three-year trial occurring right now and assisting with completion of over 220 transportation projects. A 10-year extension is proposed and will be voted on in November 2016. FRI-2 refers to the proposed projects that could be funded if the extension is successful. The continuation of FRI could fund such projects as:
Figure 3-3. TIBP Recommendations in the Vicinity of the Stadium Sites

- Meade Ave connection to Resorts World Dr
- Valley View Blvd/US 95 high-capacity transit
- Street connection/railroad grade separation
- Monorail extension to Russell Rd site
- Koval Ln widening
- Monorail extension to Mandalay Bay
- Koval/Swenson express airport connector
- Proposed LRT (airport connectivity options subject to alternatives analysis)
- Paradise/Swenson couplet extension
- Harmon Ave complete street
- Pedestrian bridges/ elevated sidewalks
- Monorail extension to Las Vegas Blvd

Las Vegas NFL Stadium Sites Traffic Assessment

TIBP Recommendations

- Developer Preferred Sites
- Freeway
- Street
- Las Vegas Monorail
- Private Train

Implementation Phasing
- Near-Term [1-5 yrs]
- Long-Term [6-10 years]

Improvement Type
- : Transit Improvement
- : Roadway Improvement
- : One-Way Couplet
- : Transit Center
- : Intersection Improvement
- : Pedestrian Bridge/ Elevated Sidewalk

Program Description
- TIBP
RTC’s Transportation Investment Business Plan; resident and visitor-oriented multimodal improvements

Note: TIBP recommendations included in the RTP are not illustrated on this map (e.g., direct access HOV interchanges).
RTC completed the Transportation Investment Business Plan (TIBP) in December 2015, which is a comprehensive blueprint for a developing a modern transportation system. The plan had four purposes:

1. To maintain and grow Southern Nevada’s position as the world’s premier destination for convention and leisure travel;
2. Connect key centers of economic activity to reduce congestion and the cost of movement;
3. Position Las Vegas as an attractive place to do business and stimulate our local, regional, and state economies; and
4. Improve safety for pedestrians and autos alike.

The TIBP provides transportation and infrastructure recommendations (freeway, surface roadway, pedestrian, and high-capacity transit) for Las Vegas’ Resort Corridor and the surrounding areas. These recommendations are meant to alleviate congestion and improve connectivity in a high-growth area that continually hosts major events that draw tens of thousands of attendees at a time, similar to an NFL game.

TIBP includes over 55 policy and infrastructure recommendations, with no current funding identified for implementation. To realize the growth enabled by projects recommended in the TIBP, Las Vegas will need to leverage existing funding and financing opportunities, implement new and innovative strategies, and foster collaboration between the public and private sectors.
Figure 3-4. Other Project Recommendations in the Vicinity of the Stadium Sites
3.2 Project Development Process

Transportation projects are expensive and time-consuming, particularly on major state-maintained freeway facilities. Even a single interchange is resource-intensive, and freeway corridor projects are hundreds of millions of dollars. Some examples of construction costs for recent and ongoing projects are as follows (costs do not include pre-construction expenses such as design):

- I-15 North Design/Build (Spaghetti Bowl to Craig Road) – $250 million (construction completed in 2009)
- I-15 South Design/Build (Blue Diamond Road to Tropicana Avenue) – $247 million (construction completed in 2012; funded by AB 595/room tax)
- I-15 Project NEON (Sahara Avenue to Spaghetti Bowl/US 95) – $559 million (currently under construction)
- I-15 South/Starr Avenue interchange project – $58 to $83 million (estimated, not including the planning and environmental phases)

Freeway projects that require federal environmental clearance have historically taken several years from the planning phases to start construction and several more years before it is completed and open to traffic. Figure 3-5 presents the project development process and the major components that must be completed.

Figure 3-5. Transportation Project Development Process

Given the cost and time to build transportation projects, the next step in this evaluation was to assess the potential needs for large-scale (freeway, interchange, major arterial) projects, as well as smaller-scale roadway and multimodal improvements.

Note that NEPA is required only when a federal action is needed. Federal actions include projects, activities, or programs funded in whole or in part under the jurisdiction of a federal agency, the need to utilize Federal lands, and/or a change of access conditions along the Interstate Highway System. Non-federal projects become “federal actions” when the project “cannot begin or continue without prior approval of a federal agency.” For example, a pedestrian bridge might traditionally be a non-federal project, but the construction of a pedestrian bridge requiring permission to access or cross an interstate highway (i.e., I-15) would require a federal action. NDOT will assist in coordination with any federal actions.
Recommendations and Next Steps

Section 2 described how the regional transportation system was assessed in light of additional traffic from the stadium sites. Section 3 outlined a range of potential improvements that may be needed and projects that would be ideal to accelerate to address deficiencies in the state highway system – as part of the current menu of planned and programmed improvements, and beyond that list. The last step, described in this section, was to assess the likely transportation needs.

4.1 NDOT Accomplishments

In recent years, NDOT has delivered multiple major transportation projects to meet Southern Nevada’s regional mobility demands. NDOT is currently constructing the State’s largest infrastructure project on I-15 (Project NEON) in the urban core of Las Vegas. Projects like the I-15 Express Lanes (Blue Diamond Road to Sahara Avenue) and I-15 South Design-Build (Silverado Ranch Boulevard to Tropicana Avenue) are two other examples of projects that have been instrumental in helping to reduce congestion, improve safety, and ease access to the Las Vegas Resort Corridor for visitors and residents.

Planning projects will ultimately lead to more construction, and NDOT recently completed and is actively engaged in several major planning efforts. These projects include the I-15 Urban Resort Corridor Study, the Southern Nevada HOV Master Plan Update, and the I-15/Tropicana Avenue Interchange Modifications Feasibility Study. Covering the whole region is the recently-initiated Southern Nevada Freeway Traffic Study by NDOT. The goal of that study is to evaluate the needs of the region’s freeway system, develop improvement strategies to meet short-term and long-term transportation needs, and maximize benefits of NDOT’s investments.

NDOT frequently works closely and partners with local agencies to implement projects, including use of local funding sources where applicable. In the case of the 2012 I-15 South Design-Build project, the project involved collaboration between NDOT, the Las Vegas Convention and Visitors Authority (LVCVA), Clark County and the RTC. The project was primarily funded by bonds issued by the LVCVA, agreed to during the 2007 Legislature to commit funds to transportation projects in the Resort Corridor. Clark County provided funding for Sunset Road from Las Vegas Boulevard to Valley View Boulevard, including a bridge over I-15. Throughout the project’s 30-month construction schedule, the RTC provided crucial traffic control coordination via the Freeway Arterial System of Transportation system.

Completed in 2012, the I-15 South Design-Build project included widening of I-15, addition of C-D roads, a direct connect ramp to Blue Diamond Road, five redesigned interchanges, 26 new bridge structures, 36 retaining walls, 1.5 miles of sound walls, 10 miles of drainage improvements, and a host of intelligent transportation system (ITS) improvements.
4.2 Leveraging Other Improvements

Improving the regional transportation network, both for stadium traffic and future growth, will require substantial investment in the regional transportation network. While the analysis in this report is a very high-level assessment and preliminary in nature, it was based on detailed traffic data (from NDOT databases and the RTC Regional Model), and leveraged substantial knowledge of the local roadway conditions and regional on-going regional planning priorities and planned/programmed improvements.

While many projects are already in the pipeline, there may be a need and opportunity to accelerate needed projects on the state highway system. However, the recommendation here is to leverage ongoing projects that are already in the planning stages.

There is more than $1.2 billion in planned/programmed improvements in the affected study area of the two potential stadium sites: nearly $25 million in the STIP, $845 million in the RTP, and $370 million proposed under FRI-2 (TiBP and other potential projects are not included in this estimate).

The main thrust of this section is to provide a set of recommendations for improvement projects that will need to be accelerated to be delivered before or shortly after the stadium’s 2019 opening year. 2

Without these improvements, it will not be possible to maintain the baseline (i.e., the same operations as without the stadium on a typical day). Of course, the stadium will not operate every day, but if there is a regular calendar of sports, concerts, and other events, the transportation investment will be essential to meet the travel demand and overall visitor experience.

To determine the priorities for next steps, the planned/programmed and conceptual transportation projects identified in Section 3.1 were reviewed in light of the traffic effects assessed in Section 2. Then, assessments of the relative importance of each project were conducted using factors such as the type of transportation facility, proximity to the site, baseline V/C ratio, increased traffic due to the stadium, and magnitude of potential improvement.

4.3 Recommendations for Advancing Projects

A set of recommendations was developed that will serve as immediate actions. These projects are expected to provide significant mobility and access benefits to support the development of a stadium site on either of the two preferred sites (Russell Road or Bali Hai).

The specific recommendations for advancing projects are summarized in Figure 4-1 and described thereafter.

2 Given the scale and the timeframes to implement majority of these planned improvements, it is not realistic to assume that NDOT can deliver all of these planned improvements by the presumed opening year (2019).
Figure 4-1. Summary of Recommendations for Advancing Projects

Las Vegas NFL Stadium Sites Traffic Assessment

Proposed Accelerated Projects

- Developer Preferred Sites
- Freeway
- Street
- Las Vegas Monorail
- Private Tram

Implementation Responsibility*
- NDOT
- Developer
- Other Transportation Provider
- To Be Determined

*Project development phase and related implementation timing varies for each project

Improvement Type
- : Transit Improvement
- : Roadway Improvement
- : Interchange Reconstruction
- : Direct Access HOV Interchange
- : Pedestrian Bridge/ Elevated Sidewalk

- Harmon Ave HOV Direct Access Ramp
- Monorail extension to Mandalay Bay
- Pedestrian bridge and elevated walkway (stadium site to monorail station)
- Hacienda Ave HOV Direct Access Ramp
- Freeway interchange and operations improvements
- I-15 South Corridor improvements (HOV and CD road systems)
NDOT recommendations of Southern Nevada project priorities that will be provided to the State Transportation Board for Approval/Action may include:

- Accelerate/fast-track NEPA and preliminary engineering for a new I-15/Hacienda Avenue HOV interchange.
- Accelerate/fast-track the NEPA and preliminary engineering for a new I-15/Harmon Avenue HOV interchange.
- Continue with the next phase of the I-15 South Corridor, including enhancements to the HOV and C-D road systems.
- Identify near-term freeway and interchange operations improvements on I-15 (from Tropicana Avenue to Sahara Avenue, i.e., the Gap Study) and I-215 (from Decatur Boulevard to Airport Connector) as part of the ongoing Southern Nevada Freeway Traffic Study.
- Continue with the next phase (NEPA) of the I-15/Tropicana Avenue interchange project. While these improvements would not be in place before the proposed stadium opening, capacity enhancements are needed as soon as possible.

There are a number of near-term multimodal improvement projects (pedestrian, roadway and transit) under development by other private or public agencies. These efforts will have significant mobility and access benefits, and they are consistent with the multimodal transportation needs at the stadium sites. The trip generation estimates developed for this study were based on expectation of multimodal (transit/shuttle, bicycle, pedestrian, etc.) use, so there is a clear need for transportation improvements to support these modes. While these multimodal projects will not provide as much additional highway capacity as freeway improvements, they are an important part of the systemic solution. The specific multimodal improvements include:

- Monorail extension (MGM to Mandalay Bay) (by Las Vegas Monorail Company)
- Pedestrian bridges (across Frank Sinatra Drive/I-15/Dean Martin, and Mandalay Bay Monorail Station to I-15 pedestrian bridge). These pedestrian bridges are only for Russell Road site. They will be developed-funded, with NDOT assistance with Federal reviews and approvals.
- RTC will evaluate the need for additional transit solutions and/or transit service changes once more details on the preferred site and access conditions are known.

Once a preferred stadium site has been chosen and a site plan has been developed, several additional steps will be necessary by others as part of the stadium development process. These include:

1. Traffic Impact Analysis – including an assessment of non-NDOT transportation facilities and improvement needs (such as pedestrian facilities and transit service expansion or enhancement).

2. Parking Needs Analysis – as determined by the developer, along with a plan identifying pedestrian and vehicular access (including bus and shuttle services) particularly if additional off-site parking is needed.

3. Comprehensive Traffic Management Plan – for event-day management of access/routing preceding and following the event

Once these steps are completed, NDOT and the local jurisdictions (in the case of the two preferred sites, Clark County, RTC of Southern Nevada, and RTC FAST) will review, comment and in collaboration with the stadium developers, determine the extent of off-site impacts, necessary improvements and costs associated with implementing them.
References

Appendix A: Trip Generation
<table>
<thead>
<tr>
<th>Site Location</th>
<th>Capacity (seats)</th>
<th>Mode Choice Assumptions1</th>
<th>Persons by Mode</th>
<th>Avg Persons/Vehicle</th>
<th>Avg Persons/Transit Vehicle</th>
<th>Total Vehicles Traveling to/from Stadium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Auto</td>
<td>Transit/ Shuttle2</td>
<td>Walk/ Bike</td>
<td>Other3</td>
<td>Auto</td>
</tr>
<tr>
<td>1 Bali Hai Golf Course</td>
<td>65,000</td>
<td>62%</td>
<td>24%</td>
<td>8%</td>
<td>6%</td>
<td>44,300</td>
</tr>
<tr>
<td>2 Russell Road Site</td>
<td>65,000</td>
<td>60%</td>
<td>24%</td>
<td>6%</td>
<td>10%</td>
<td>39,000</td>
</tr>
<tr>
<td>3 Fertitta Site</td>
<td>65,000</td>
<td>68%</td>
<td>22%</td>
<td>7%</td>
<td>3%</td>
<td>44,200</td>
</tr>
<tr>
<td>4 UNLV, Thomas & Mack Center</td>
<td>65,000</td>
<td>66%</td>
<td>20%</td>
<td>10%</td>
<td>4%</td>
<td>42,900</td>
</tr>
<tr>
<td>5 Wynn Golf Course</td>
<td>65,000</td>
<td>57%</td>
<td>25%</td>
<td>13%</td>
<td>5%</td>
<td>37,050</td>
</tr>
<tr>
<td>6 MGM Rock in Rio</td>
<td>65,000</td>
<td>58%</td>
<td>25%</td>
<td>12%</td>
<td>5%</td>
<td>37,700</td>
</tr>
<tr>
<td>7 Cashman Field</td>
<td>65,000</td>
<td>76%</td>
<td>19%</td>
<td>1%</td>
<td>4%</td>
<td>49,400</td>
</tr>
</tbody>
</table>

Notes:
The site location mode choice matrix is a preliminary analysis based on available details for the proposed stadium project and the experience of similar stadiums in comparable markets. This preliminary analysis notwithstanding, we recognize that southern Nevada and this project are unique in many important ways including, without limitation, the stadium project’s proximity to the Las Vegas Resort Corridor. As such, additional research and analysis may be required to refine these assumption as additional information about the project become available.

1Mode Choice Sources:
- Sports Authority Field, Denver Broncos (Henao 2012)
- CenturyLink Field, Seattle Seahawks (Horton Street 2012)
- Qualcomm Stadium, San Diego Chargers (AECOM 2015)
- Levi Stadium, San Francisco 49ers (Hexagon, 2009)

2May require additional investment to support increase transit service (costs are unknown)

3“Other” includes such options as limos and ride-share services
Appendix B: Baseline Traffic Analysis
Location

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing</th>
<th>Baseline - 2019</th>
<th>Baseline - 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>between Dean Martin Drive and Las Vegas Boulevard</td>
<td>0.56</td>
<td>31,652 3,000 2,232 1.863</td>
<td>50,784 3,000 2,017 2,515</td>
</tr>
<tr>
<td>EB</td>
<td>31,652 3,000 2,232 1.863</td>
<td>50,784 3,000 2,017 2,515</td>
<td>54,294 3,000 2,918 2,436</td>
</tr>
<tr>
<td>WB</td>
<td>42,325 3,000 2,694 2,356</td>
<td>51,399 3,000 2,461 3,146</td>
<td>55,348 3,000 4,040 6,125</td>
</tr>
</tbody>
</table>

Tropicana Avenue			
between Las Vegas Boulevard and Paradise Road	1.30	44,353 3,000 2,714 2,524	49,549 3,000 2,737 2,452
EB	38,553 3,000 2,314 2,314	41,951 3,000 2,663 2,663	42,276 3,000 2,511 2,717
WB	26,064 2,350 2,156 1.981	26,737 2,350 1,931 1,931	29,137 2,350 2,163 1,767

between Paradise Road and Eastern Avenue	1.75	32,189 2,250 2,359 1.928	33,948 2,250 1,936 1,818
EB	23,745 2,250 2,231 1.480	26,290 2,250 2,007 1,994	31,290 2,250 2,331 1,440
WB	24,309 2,250 1,718 1.446	30,546 2,250 1,946 1,386	33,195 2,250 1,731 1,457

between Eastern Avenue and I-15	2.00		
EB	17,894 1,800 1,239 1,145	19,700 1,800 1,366 1,263	21,096 1,800 1,376 1,272
WB	19,212 1,800 1,649 1,546	22,058 1,800 1,527 1,507	24,520 1,800 1,847 1,558

Russell Road			
between Valley View Boulevard and I-15	0.50	10,904 1,800 829 698	13,666 1,800 702 591
EB	10,904 1,800 829 698	13,666 1,800 702 591	14,901 1,800 912 768
WB	14,352 1,800 1,258 1,011	17,722 1,800 1,409 1,132	19,002 1,800 1,476 1,186

between Rainbow Boulevard and Jones Boulevard	1.00		
EB	27,708 2,250 1,382 1,305	27,389 2,250 1,668 1,816	28,418 2,250 1,751 1,906
WB	23,986 2,250 1,776 1,357	27,073 2,250 1,658 1,357	28,425 2,250 1,765 1,348

between Jones Boulevard and I-15	1.50		
EB	32,439 2,250 2,038 1,762	41,436 2,250 1,931 1,762	45,705 2,400 2,244 1,932
WB	29,357 2,250 2,016 1,683	42,350 2,000 2,615 2,089	49,107 2,550 2,304 1,754

between I-15 and Paradise Road	2.50		
EB	32,374 2,250 1,979 1,933	46,632 2,250 2,932 2,804	47,794 3,000 3,046 2,975
WB	27,021 2,250 1,732 1,723	41,959 2,250 2,717 2,586	45,465 2,250 2,185 2,175

between Paradise and Eastern Avenue	1.90		
EB	22,482 2,250 1,684 1,594	31,350 2,250 1,722 1,388	31,839 2,250 1,824 1,461
WB	20,824 2,250 2,122 2,132	29,321 2,250 1,958 1,220	31,772 2,250 2,104 1,332

between Eastern Avenue and I-15	1.00		
EB	21,823 2,250 1,810 1,150	30,980 2,250 1,745 1,109	31,871 2,250 1,804 1,177
WB	21,823 2,250 1,810 1,150	30,980 2,250 1,745 1,109	31,871 2,250 1,804 1,177

Notes:

1. Hourly; directional for freeways; bi-directional for surface streets
2. Monday Night Football - 4 to 6 PM - coming to stadium
3. Sunday day game ending at 4: 4 to 6 PM leaving the stadium
Appendix C: Inventory of Planned and Programmed Projects
NDOT: Las Vegas NFL Stadium Sites Traffic Assessment

STIP, RTP, and FRI-2 Planned and Programmed Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Lead Agency</th>
<th>Source</th>
<th>Project Phase</th>
<th>Cost</th>
<th>Status</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>613</td>
<td>Sunset Rd reconstruction/Signal project</td>
<td>NDOT</td>
<td>STIP</td>
<td>Construction</td>
<td>$215,000</td>
<td>No construction date</td>
<td></td>
</tr>
<tr>
<td>6182</td>
<td>Tropicana Ave arterial improvements, Package 2; Dean Martin Dr to Boulder Hwy</td>
<td>NDOT</td>
<td>STIP</td>
<td>Construction</td>
<td>$24,000,000</td>
<td>Construction start 2018</td>
<td></td>
</tr>
<tr>
<td>2715</td>
<td>Valley View Blvd/Russell Rd intersection improvement</td>
<td>Clark County</td>
<td>STIP</td>
<td>Construction</td>
<td>$225,265</td>
<td>Construction start 2016</td>
<td></td>
</tr>
</tbody>
</table>

Planned Projects (RTP 2013-2015)

1. **Hunnings Rd corridor improvements to accommodate BRT; Rainbow Blvd to Boulder Hwy**
 - Roadway improvements, stations, and facilities to support implementation of BRT
 - Lead Agency: RTC/SNV
 - Source: RTP
 - Project Phase: Construction
 - Cost: $31,000,000
 - Status: Complete 2020

2. **Las Vegas Blvd corridor improvements to accommodate BRT; St. Rose Pkwy to Sunset Blvd**
 - Shelters and auxiliary equipment for BRT operations in South Strip corridor
 - Lead Agency: RTC/SNV
 - Source: RTP
 - Project Phase: Construction
 - Cost: $6,000,000
 - Status: Complete 2020

3. **L-15 South Phase 3B; Blue Diamond Rd to Tropicana Ave**
 - Widening from 8 to 10 lanes, restriping (7/0), replace concrete section between L-15 and Tropicana Ave; add HOV lanes, and replace Tropicana Ave interchange
 - Lead Agency: NDOT
 - Source: RTP
 - Project Phase: Construction
 - Cost: $374,000,000
 - Status: Complete 2030
 - NEPA complete

4. **L-15 Planning and NEPA for HOV ramps; Blue Diamond Rd to Sahara Ave**
 - Conduct planning study and NEPA evaluation for addition of HOV direct access ramps
 - Lead Agency: NDOT
 - Source: RTP
 - Project Phase: Planning/NEPA
 - Cost: $5,000,000
 - Status: Complete 2020

5. **L-15 HOV direct access ramps; Blue Diamond Rd to Sahara Ave**
 - Construct HOV direct access ramps
 - Lead Agency: NDOT
 - Source: RTP
 - Project Phase: Construction
 - Cost: $400,000,000
 - Status: Complete 2035

6. **F-235 direct connect HOV ramps**
 - System-to-system direct connect HOV ramps
 - Lead Agency: NDOT
 - Source: RTP
 - Project Phase: Construction
 - Cost: $75,000,000
 - Status: Complete 2020

7. **L-15/235 Airport Connector interchange upgrade, Phase 2**
 - Upgrade interchange
 - Lead Agency: RTC
 - Source: Construction
 - Project Phase: Construction
 - Cost: $5,150,000
 - Status: Currently under construction

Anticipated Projects (FRI-2 funding)

1. **Hunnings Rd/Dean Martin Dr slip ramp**
 - Construct new connection to allow direct access between corridors
 - Lead Agency: Clark County
 - Source: RTC FRA-2 list
 - Project Phase: Construction
 - Cost: $6,300,000
 - Status: Medium-term (6-10 yrs)

2. **Resort Corridor Area Road Improvements (TRIP) - Phase 1**
 - Roadway specific elements, including reassuring, bicycle and pedestrian facilities, and bottleneck relief
 - Lead Agency: RTC/SNV
 - Source: FRA-2 list
 - Project Phase: Construction
 - Cost: $68,750,000
 - Status: Short-term (1-5 yrs)

3. **Resort Corridor Area Road Improvements (TRIP) - Phase 2**
 - Roadway specific elements, including reassuring, bicycle and pedestrian facilities, and bottleneck relief
 - Lead Agency: RTC/SNV
 - Source: FRA-2 list
 - Project Phase: Construction
 - Cost: $121,250,000
 - Status: Medium-term (6-10 yrs)

4. **Hunnings/Tropicana Connector**
 - Provide a new north-south connection in Resort Corridor
 - Lead Agency: Clark County
 - Source: FRA-2 list
 - Project Phase: Construction
 - Cost: $130,000,000
 - Status: Medium-term (6-10 yrs)

5. **Valley View Blvd extension, Blue Diamond Rd to Sunset Blvd**
 - Extend corridor to create a continuous route
 - Lead Agency: Clark County
 - Source: RTC FRA-2 list
 - Project Phase: Construction
 - Cost: $8,640,000
 - Status: Medium-term (6-10 yrs)

6. **Dean Martin Dr widening, Blue Diamond Rd to Warm Springs Rd**
 - Widen corridor from 3 to 4 lanes
 - Lead Agency: Clark County
 - Source: RTC FRA-2 list
 - Project Phase: Construction
 - Cost: $4,400,000
 - Status: Medium-term (6-10 yrs)

7. **L-15/Tropicana Ave interchange reconstruction**
 - Reconstruct interchange to develop expanded right diamond interchange
 - Lead Agency: NDOT
 - Source: RTC FRA-2 list
 - Project Phase: Construction
 - Cost: $50,000,000

1. **Hourly; directional for freeways; bi-directional for surface streets**
2. **Monday Night Football - 4 to 6 PM - coming to stadium**
3. **Sunday day game ending at: 4: 4 to 6 PM leaving the stadium**