Prototyping and Field Testing of a Demand-Responsive Rumble Strip Mechanism

July 2018

Nevada Department of Transportation
1263 South Stewart Street
Carson City, NV 89712
Disclaimer

This work was sponsored by the Nevada Department of Transportation. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of Nevada at the time of publication. This report does not constitute a standard, specification, or regulation.
This project involved the development, design, prototyping and testing of a Demand-Responsive Transverse Rumble Strip (DRTRS) mechanism, which becomes active (lowers an array of strips) only when necessary in order to alert drivers of downstream risks. Three alternative mechanisms for the deployment of DRTRS designed and evaluated. A first prototype using an electric actuator was tested. Results illustrate the vibration and noise generated by the prototype. Our evaluation concluded that an innovative hydraulically-activated design is the best approach to deploy the DRTRS. The proposed DRTRS apparatus is modular, and the mechanical components of the DRTRS units are reliable with few components. The hydraulic system will need regular maintenance. However, this system is placed in a cabinet outside of the travel lanes. The DRTRS deployment cost is comparable to existing solutions for intersections, school zones, toll lanes, and speed control zones. A second prototype based on the hydraulic system was built and it is about to be tested on a public facility at the University of Nevada Las Vegas. Results from this testing will provide information about its effectiveness and potential insights to further improve our design to make it even more cost and safety effective.
Executive Summary

This project involved the development, design, prototyping and testing of a Demand-Responsive Transverse Rumble Strip (DRTRS) mechanism, which becomes active (lowers an array of strips) only when necessary in order to alert drivers of downstream risks. Various studies indicate that noise level increases of 4 dB or greater are sufficient to alert drivers using transverse rumble strips [1], [2], [3]. Ideally, the DRTRS would be installed on travel lanes upstream of locations with traffic safety concerns or where safety improvements are required. The DRTRS can be used as a standalone safety improvement or in conjunction with other improvements, such as railroad crossing arms or flashing beacons in order to make them more effective.

Existing practice involves the use of permanent transverse rumble strips, which are either milled in or installed above the pavement using synthetic materials. Given that rumbles are always there (active), drivers get used to them and the surprise effect diminishes over time. Hence, permanent transverse rumble strips eventually lose effectiveness. In addition, frequent contact with rumble strips produces unnecessary vehicle deterioration, discomfort, noise, and pavement wear. Because of unnecessary noise and discomfort, permanent milled rumble strips have limited use, whereas DRTRS will have a much broader range of applications, such as in school zones, in residential areas, or on highways. Moreover, the DRTRS will be useful in controlling speeds along facilities of special interest such as urban parks, commercial zones, hospitals, or sites with high-crash frequency.

The DRTRS will be active only when needed, preventing drivers from becoming accustomed to the rumble strip effects, while minimizing noise, vehicle deterioration, and wear of, as compared to permanent rumble strips. Hence, drivers’ attention will be regained to address distractions, low visibility, or fatigue, as well as to reduce speed along special zones, such as animal crossings or facilities with high-crash frequencies due to excessive speeds. The DRTRS may be activated through push buttons, traffic controllers, and/or detection systems. Additionally, the DRTRS provides redundancy in the case of autonomous vehicles in order to minimize the likelihood of crashes because of failures and/or malfunctions in the detection or navigation systems. The DRTRS does this by offering an alternative communication channel that can alert the autonomous vehicle to slow down or stop, just as it does with human drivers. The DRTRS has the potential to address at least one of the six research priorities in the Fixing America’s Surface Transportation (FAST) Act: promoting safety.

This study designed and evaluated three alternative mechanisms for the deployment of DRTRS. A first prototype using an electric actuator was tested. Results illustrate the vibration and noise generated by the prototype. Our evaluation concluded that an innovative hydraulically-activated design is the best approach to deploy the DRTRS. The proposed DRTRS apparatus is modular, and the mechanical components of the DRTRS units are reliable with few components. The hydraulic system will need regular maintenance. However, this system is placed in a cabinet outside of the travel lanes. The DRTRS deployment cost is comparable to existing solutions for intersections, school zones, toll lanes, and speed control zones. A second prototype based on the hydraulic system was built and it is about to be tested on a public facility at the University of Nevada Las Vegas. Results from this testing will provide information about its effectiveness and potential insights to further improve our design to make it even more cost and safety effective.
Table of Contents

INTRODUCTION ..5
 Problem Statement ..5
 Literature Review ..5
PROPOSED SOLUTION ..6
 Design Overview ..6
 First Design and Prototype ...7
 General Operations Description: ...10
 Second Design and Prototype ..10
 General Operations Description: ...11
 Third Design and Prototype ...12
 General Operations Description: ...14
TESTING AND RESULTS ...14
 Prototyping and Testing of the First Design ..14
 Result and Discussion from the First Design ...17
 Site Selection for Testing the Third Design ...20
 Prototyping and Testing of the Third Design ...22
POTENTIAL PAYOFF FOR PRACTICE ...23
 Alternative Solutions ...23
 Additional Applications of the Proposed Solution ..23
TRANSFER TO PRACTICE ..23
CONCLUSIONS AND NEXT STEPS ...24
REFERENCES ...26
APPENDIX A ...28
APPENDIX B ..145
APPENDIX C ..167
APPENDIX D ..177
APPENDIX E ..183
List of Figures and Tables

Figure 1. DRTRS Concept ...7
Figure 2. A Potential Deployment Setup ..8
Figure 3. Schematic of the DRTRS in the Field9
Figure 4. A Unit Box Beam and Roller Assembly of the DRTRS9
Figure 5. A Zoomed View (Sectioned) Showing the Most Important Unit Elements of the DRTRS ..10
Figure 6. Schematic of the DRTRS in the Field11
Figure 7. Expanded Isometric View ..11
Figure 8. Cross-Sectional View of the Rumbles Assembly and Wearing Plate for a Single Rumble ...12
Figure 9. Schematic of the DRTRS Third Design in the Field12
Figure 10. A Unit Box Beam and Roller Assembly of the DRTRS Third Design ...13
Figure 11. A Zoomed View Showing One Hydraulic Unit and Support of the Demand-Responsive Traverse Rumble Strips14
Figure 12. Prototype for the Unit Box Beam and Roller Assembly and Control Cabinet in the Machine Shop ...15
Figure 13. Installation in the Field of the Steel Housing for the Unit Box Beam and Roller Assembly ...16
Figure 14: In-vehicle Vibration from a Single Run17
Figure 15: In-vehicle Noises from a Single Run17
Figure 16: DRTRS Vibration from a Single Run18
Figure 17: East Harmon Avenue in Front of the Library Divided into Five Subsections. ...20
Figure 18: Taking Speed Data at one of the Subsections of East Harmon Avenue ...21
Figure 19: Installation Schematics of the DRTRS, where, (1) Rumble device, (2) Control Cabinet, (3) Crosswalk, (4) Camera, (5) Poles with Push Button, (6) Pedestrian Crossing Signs, ...22
Figure 20: Schematic of the DRTRS in the Field169
Figure 21: A Unit Box Beam and Roller Assembly of the Demand-Responsive Rumble Strips ...170
Figure 22: A Zoomed View Showing one of the hydraulic units and support of the of the Demand-Responsive Rumble Strips ...170

Table 1: Paired t-test between In-vehicle Vertical Vibrations20
Table 2: Speed Profile on Different Subsections21
INTRODUCTION

Problem Statement
Promoting safety is one of the six research priorities in the Fixing America’s Surface Transportation (FAST) Act as well as a priority for many state agencies. According to the National Safety Council (NSC), in 2016, as many as 40,000 people died in the U.S. in motor vehicles crashes\(^1\). This represents a 6% rise from 2015 and a 14% increase in deaths since 2014. In 2015, 5,376 pedestrians and 818 bicyclists died in crashes with motor vehicles (National Highway Traffic Safety Administration, Traffic Safety Facts)\(^2\). This corresponds to 17.7% of the 35,092 total U.S. crash fatalities that year. Millions more are seriously injured. The cost of motor-vehicle deaths, injuries, and property damage in 2016 was estimated at $432 billion, a 12% increase from 2015.

There is consensus that human errors are the most significant contributors to the occurrence and severity of a crash. Visual signals are by far the most common approach to alert drivers about the need to slow down, pay attention, or stop. However, distractions, fatigue and/or low visibility warrant pursuing alternative mechanisms to engage acoustic and haptic senses to regain drivers’ attention [4]. Highway zones near transit stops represent a continuous traffic safety risk due to high pedestrian activity and the rush of users to catch the next bus, which often requires crossing multiple travel lanes. This risk is particularly relevant to low-income users, who regularly depend on transit service, and western metro regions with very wide highways. At bus stops there is also the high risk of cars crashing into the bus or each other. According to the Federal Transit Administration, we have observed an increase in transit fatalities of 37% from 2007 to 2016\(^3\). In the United States, mechanisms such as transverse rumble strips are mainly used on approaches to intersections, toll plazas, horizontal curves, and work zones to slow down traffic [4]. Traditional transverse rumble strips show effectiveness [5] [6] [7]. However, drivers tend to become familiar with their locations over time and their effectiveness diminishes. In addition, some drivers try to avoid the static rumbles [4], creating hazardous driving conditions. Unnecessary noise, vehicle deterioration, and pavement wear are additional concerns associated with traditional transverse rumble strips.

Literature Review
Multiple agencies have studied the effectiveness of rumble strips. The NCHRP Synthesis of Highway Practice 191 (Use of Rumble Strips to Enhance Safety) reported a crash reduction of 14% to 100% from 10 before-and-after studies that investigated the effectiveness of transverse rumble strips [8]. A study by the Federal Highway Administration [9] investigated the safety effect of transverse rumble strips on approaches to stop-controlled intersections using the Empirical Bayes method. Results indicated that transverse rumble strips may be effective in reducing severe injury crashes at minor road stop-controlled intersections. However, an increase occurred in property damage-only crashes. It was not possible to determine the reasons for this tradeoff. A limited economic analysis indicated a reduction in crash harm of about $6,600 per intersection per year due to the installation of transverse rumble strips.

\(^1\) \url{http://www.nsc.org/NewsDocuments/2017/12-month-estimates.pdf}
\(^2\) \url{https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812375}
\(^3\) \url{https://www.transit.dot.gov/sites/fra.dot.gov/files/docs/ntd/66016/2016-ntst-appendix.pdf}
The Texas Department of Transportation (DOT) utilizes transverse rumble strips at various locations, including high-speed signalized intersections with sight restrictions or high-crash rates, and at newly installed stop- or signal-controlled intersections [5]. The Maryland DOT recommends transverse rumble strips on approaches to signalized intersections where there is a safety problem, where other warning devices have failed to reduce crash frequency (in facilities without adequate stopping sight distance or sufficient visibility of signals or signs), and on intersections at unexpected locations [6].

To analyze the effect of transverse rumble strips on drivers’ behavior, the Minnesota DOT completed a series of studies. The first study used a driving simulator to investigate driver-stopping performance. The results showed that transverse rumble strips make drivers use their brakes more and apply them earlier [7]. The second study focused on sleep-deprived drivers and showed positive results. A third study revealed that after the first set of transverse rumble strips in real-world approaches, drivers slowed down earlier, compared to locations without treatment; on average, the difference was 2.0 to 5.0 mph [10].

The Western Transportation Institute documented the current practice among transportation agencies and proposed guidelines regarding the design, installation, and use of rumble strips [11]. Yang et al. [4] studied the impact of transverse thermoplastic rumble strips in terms of the sound and vibration drivers feel inside the vehicle, their choice of speed, and their braking behavior when approaching an intersection. The levels of stimuli experienced by drivers were measured using a sound level meter and an accelerometer to measure acceleration rates along the longitudinal, lateral, and gravitational axes. Speeds were measured with a radar gun with ±0.1 mph accuracy and radar. Video data provided vehicle braking, swerving, or shifting maneuvers. Five sites in Alabama were used in this study. Although the study provided excellent results and insights, it was limited to a single vehicle and thermoplastic rumble strips. The study also highlighted that various previous studies have provided inconsistent results regarding the speed effect of transverse rumble strips. Hence, further comprehensive evaluations are required on the basis of these inconsistencies and the NCHRP study [8], Guidelines for Selection of Speed Reduction Treatments at High-Speed Intersections. Our proposed solution is likely to address some of the issues associated with transverse rumble strips and provide superior benefits. However, research is required to determine the right configuration for variable operational conditions.

PROPOSED SOLUTION

Design Overview

We proposed to retrofit roadway zones upstream of bus stops, transit stations, pedestrian crossings, and any other area with traffic safety concerns with a Demand-Responsive Transverse Rumble Strip (DRTRS) mechanism, which becomes active (lowers an array of strips) only when necessary to alert drivers of downstream risks. Multiple alternatives were considered and evaluated for the detail design, prototyping and testing of the DRTRS. This report describes the top three alternatives. The first alternative was designed, prototyped and tested. The second alternative was considered and evaluated but was not designed because its prototyping requires a special customized component which is not easy to build. The third alternative was designed, and it is currently under prototyping and testing. The idea behind the DRTRS is to provide the roadway profile illustrated in Figure 1 only when required. Figure 2 depicts a potential deployment setup for an approach with three lanes and a crosswalk.
First Design and Prototype

The first alternative for the implementation of the DRTRS consists of a concrete box frame that houses an array of rectangular box beams, Figure 3. Each DRTRS unit can be lowered or raised by a roller assembly mechanism, Figure 4. The beams are spaced at regular distances from each other and are transverse to the flow of vehicular traffic. When the beams are raised, the concrete box frame together with the beams provide a flat rolling surface flush with the level of the roadway. When the beams are lowered, the holes in the concrete box create transverse rumble strips.

The proposed modular design is compact, less than 10-inches high, and robust (few components). It was developed to maintain functionality under various conditions including severe temperature, as well as variations and existence of rain, snow, and dirt. This design can be quickly installed and uninstalled. The current design enables setting the depth of the rumbles at two different levels.
A= Distance from the edge of the housing box to a rumble
B= Length of a DRTRS => min = 10 ft – 2*A; Max = 12 ft – 2*A
C= Width of a DRTRS = 4 inches
D= Gap between two DRTRS = 8 inches
E= Center to center distance between two DRTRS = 12 inches
G= Distance from the left lane mark to the housing box
H= Distance between two adjacent housing boxes

S= Shoulder with
L= Length of the housing box for a set of DRTRS
W= Width of the housing box for a set of DRTRS
SSD = Stopping sight distance
Permanent rumble strips on the housing box
Permanent rumble strips on the pavement and shoulder
R = Maximum depth of the rumbles = 0.5 inches

Figure 2. A Potential Deployment Setup
Figure 3. Schematic of the DRTRS in the Field

Figure 4. A Unit Box Beam and Roller Assembly of the DRTRS

Figure 5 represents a zoomed view of the most important components of the box beam and roller assembly units within the DRTRS. Key components include:

1) Top plate that aligns with the road when at the highest level
2) Rectangular box beam
3) Shock absorber
4) Lifting mechanism consisting of: (i) a linear actuator and (ii) a stepped cam and follower subsystem that allows lifting the rumble strip to the desired height.
General Operations Description:

Initially, the wearing plate is flush with the top of the concrete box and roadway. To lower the unit, the actuator retracts, causing the shock absorbers to compress the rolling assembly to roll down, lowering the box beam. To return to the initial position, the actuator expands, and the shock absorbers push the box beam, causing the top plate to become flush with the top of the concrete box.

Second Design and Prototype

Figure 6 illustrates the alternative that was considered for the implementation of the DRTRS. Figure 7 shows the three major components of the DRTRS from top to bottom: (i) a Wearing Plate, (ii) a Rumbles Assembly, and (iii) a Base Plate. The Base Plate will be bound to the pavement and is designed to provide housing and support to the Rumbles Assembly and Wearing Plate. In addition, the Base Plate provides connection to the conduits. A cross section of the Rumbles Assembly and Wearing Plate for a single rumble is provided in Figure 3. The Rumble Plates, housed in the Rumbles Assembly, can be lowered or raised by adding or removing fluid from the Hydraulic Lifting Tube. The Rumble Plates are spaced at regular distances from each other and are transverse to the flow of vehicular traffic. When the plates are raised, together with the Wearing Plate, they provide a flat rolling surface flush with the level of the roadway. When the Rumble Plates are lowered, the holes in the Wearing Plate create transverse rumble strips.

The proposed modular design is compact, five and a half inches high, and robust (few components). It is designed to maintain functionality under various conditions including severe temperature, as well as variations and existence of rain, snow, and dirt. The spaces between the Rumbles Frame and the Rumble Plate, which create the rumble effect, will be sealed using gaskets to ensure that water, snow, or dirt will not penetrate the Rumbles Assembly. By housing the Rumbles Assembly in the Base Plate, the entire mechanism, and any sensors, can be quickly removed and replaced. Maintenance of the rumbles and any sensor can be done offsite, away from
traffic. As a potential desirable future capability, pressure from the traffic on the Rumbles
Assembly can be used to count, classify vehicles and measure speeds.

![Figure 6. Schematic of the DRTRS in the Field](image)

Key components of the Rumbles Assembly illustrated in Figure 8 include:
1) A single Base Plate designed so an array of rumbles can be assembled. To make an array,
 the rumble Assembly Frame is slid together, glued and locking pins placed.
2) A Hydraulic Lifting Tube with the Hydraulic Base and Hydraulic Cover protects the tube.
3) A Rubber Seal that prevents water and dirt from entering.

General Operations Description:
Initially, the Rumble Plates are flush with the Wearing Plate and roadway. To lower the unit, fluid
is removed from the Hydraulic Lifting Tube. The resulting vacuum created, along with the Rubber
Seal push down, causes a Locking Plate and the Rumble Plate to lower. To return to the initial
position, fluid is pumped into the Hydraulic Lifting Tube, causing the Locking Plate and Rumble
Plate to rise back into the initial position, which is flush with the top of the Wearing Plate.
Third Design and Prototype

Figure 9 illustrates the third alternative for the implementation of the DRTRS. The rumble effect is created by a set of rumble units illustrated in Figure 10. These units include three hydraulic actuators to lower or raise C Channel beams. Figure 11 presents a zoomed view of the most important components of the rumble strip units, including a hydraulic actuator, the C Channel beam, a support column, and a base plate. The rumble units are separated by spacer sections, made of structural steel angles, and filled with concrete to provide stiffness and stability. Rumble strips and spacer sections are bolted to a steel box frame, which will be attached to the road using studs and epoxy. Rumble strips and spacer units can be disassembled separately without the need to remove the box frame. Hydraulic lines connect the actuator to a hydraulic pump and control unit, which will be placed in an appropriate box on the side of the road. Appendix B provides a detailed structural analysis of this design.
The default position of the rumble strips is to have the upper surface of the C Channels flush with the road, spacer units, and upper edges of the box frame. The rumble strips can be activated by either pedestrian push buttons, traffic signal controllers, signals from the buses, and/or vehicle/pedestrian detection systems. When a signal is sent to the system, the hydraulic actuators will lower the rumble strips’ C Channels; the resulting recesses create the transverse rumble strip effect.

The proposed modular design is compact, less than 6-inches deep, allowing placement within asphalt without the need for added support or preparation. The rumble units are four inches wide. They are spaced eight inches from each other and are transverse to the flow of vehicular traffic. The C Channel beams create a rumble of 0.5 inches deep. These dimensions were chosen based on the existing literature about conventional transverse rumble strips. Although different jurisdictions use different dimensions, the ones chosen for the DRTRS are consistent with most jurisdictions. However, the spacing and depth of the DRTRS can be changed relatively easily. The design is robust with relatively few components. It was developed to maintain functionality under various conditions including severe temperature variations, as well as rain, snow, and dirt. The use of hydraulic power enhances safety because no electric lines will be used. The DRTRS can be installed and uninstalled quickly. The DRTRS can either be installed directly into the roadway or into an assembly base. The assembly base enables the quick removal and replacement of the DRTRS. This allows minimum maintenance time in the roadway, removal of the unit for pavement operations, and the ability to upgrade roadway sensors, which can be installed in DRTRS for other traffic management purposes. Support columns are added to carry the load caused by the tires of the passing vehicles when the strips are at the recessed position.
Key components of the DRTRS include:
5) C-channel beams.
6) Hydraulic actuators that lower the C Channel beams to create the rumble effect. These actuators are spring-loaded, which means that only hydraulic power is used to lower the strips.
7) A controller unit that allows various modes of input to the rumble strips.

General Operations Description

At the default position, the C Channels of the rumble strip units are flush with the top of the steel and concrete box frame and roadway. To lower the rumble units, the hydraulic actuators retract, lowering the C Channel beams. To return to the default position, the hydraulic pressure is released, allowing springs within the hydraulic actuators to push the C Channel beams up, causing them to become flush with the top of the box and roadway. The DRTRS can be activated through communication with pedestrians, traffic signal controllers, detection systems, and/or signals from the buses.

TESTING AND RESULTS

Prototyping and Testing of the First Design

Figure 12 shows a prototype of a Unit Box Beam and Roller Assembly and cabinet, which houses all the control hardware and software required for operation. Appendix A provides a detailed design of the reinforced concrete box that houses the Unit Box Beams and Roller Assemblies.
Figure 12. Prototype for the Unit Box Beam and Roller Assembly and Control Cabinet in the Machine Shop

Figure 13 illustrates installation in the field of the steel housing for the Unit Box Beam and Roller Assembly.
Figure 13. Installation in the Field of the Steel Housing for the Unit Box Beam and Roller Assembly.
Result and Discussion from the First Design

Appendix E provides a detailed field test methodology for the testing of the first design. Noise and vibration data have been collected using multiple smartphones from field testing, for in-vehicle and on the DRTRS, following a methodology from the literature \[12, 13, 14, 15\]. For in-vehicle experiments, the x axis served as the lateral axis, z axis as the longitudinal axis, and y axis as the vertical axis. For the case of DRTRS data, the x axis was aligned along the lateral axis of the vehicle, y axis along the longitudinal, and z axis along the vertical axis.

According to the device setup, the conventional y axis served as the vertical axis for the cases of inside vehicle data. When the DRTRS was active, there was a consistent peak and trough for the vertical vibrations (y axis); there was higher magnitudes of vertical vibrations when front tires of the truck hit the rumbles, but for the case of rear tires, the magnitude was medium. When the
DRTRS was inactive, there was less in-vehicle vibrations compared to that of active DRTRS. Consequently, active DRTRS yielded vibrations from 13.5 ms^{-2} to 6.5 ms^{-2} which was a feelings of 7 ms^{-2} for in-vehicle drivers to give them a prerequisite alarm for the upcoming pedestrians on the crossings. Inactive DRTRS gave around $3-4 \text{ ms}^{-2}$ of in-vehicle vibrations which is much moderate than that of the active ones.

![Figure 15: In-vehicle Noises from a Single Run](image)

In-vehicle noise is around 62 dB with the active DRTRS which is around 2 dB higher than the inactive DRTRS. The first prototype was designed with a single rumble which necessarily made a little extra noise, whereas five sets of continuous rumbles in a DRTRS would yield more noise during its active stage.
Because of the balance of the c section beam of the rumble with the roadway surface, when the truck run over the DRTRS, the tires had a good contact with the rumbles that made extra vibrations into the directions of the z axis. Conversely, when the DRTRS was active, no notable vibration was observed as the big tires ran over the niche meagerly touching the c section beam of the rumble. Larger dimension wheels run over the DRTRS with minimum vibration because of their large diameters.

As the testing site of the first design was not long enough to speed up and maneuver, the test runs were performed at a maximum speed of 20 mph. In addition, frequent acceleration and braking to get the truck stopped within the site without hitting other property might have created issues with the unwanted vibrations along the x, y and z axes. Consequently, an elongated continuous road section will yield a better result for the in-vehicle noise and vibration.
The first design of the prototype was deployed with the main concern of the noise and vibrations during the inactive and active stages of the DRTRS. The experiment was performed with the truck running around at 20 mph. In-vehicle noise and vibrations, DRTRS self-vibrations and noise have been recorded for every single run. Paired sample t-tests were performed for in-vehicle vibration to check how it differs when the DRTRS is active or inactive. The hypothesis assumed that there were no significant differences in in-vehicle vibration for active and inactive DRTRS.

Table 1: Paired t-test between In-vehicle Vertical Vibrations

<table>
<thead>
<tr>
<th>In-vehicle vertical vibrations during active DRTRS - In-vehicle vertical vibrations during inactive DRTRS</th>
<th>Mean</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
<th>Reject H₀ at 95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.57394</td>
<td>3.412</td>
<td>9</td>
<td>.008</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

For in-vehicle vertical vibration, the positive t value implies that the hypothesized vertical vibration during the active DRTRS stage is higher than that of the inactive stage, and that is significant at a 95% confidence interval. The half inch depth of the c section bar within the niche during the active stage exhibited substantial vertical vibrations compared to the inactive stage of the DRTRS which is significant to alert drivers.

Site Selection for Testing the Third Design

A prototype for the third design will be installed and tested on East Harmon Avenue within the UNLV jurisdiction. Vehicle speeds varies across the corridor as illustrated by the following analysis. The test corridor was divided into 5 Subsections as depicted in Figure 18. The red circles (O) in Figure 18 indicate the positions of the radar guns in each subsection. Ninety-percentile speeds have been considered as the expected analysis speed.

![Figure 17: East Harmon Avenue in Front of the Library Divided into Five Subsections.](image-url)
Table 2: Speed Profile on Different Subsections

<table>
<thead>
<tr>
<th></th>
<th>Eastbound (mph)</th>
<th>Westbound (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 percentile speed on subsection 1</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>90 percentile speed on subsection 2</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>90 percentile speed on subsection 3</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>90 percentile speed on subsection 4</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>90 percentile speed on subsection 5</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

The westbound direction of subsection 4 has the highest 90 percentile speed of 27 mph. The sight distance is the length of the road seen by a driver at any time. This distance of visibility must be such that, when a driver is moving on the road, he/she must have time to perform the necessary avoidance maneuvers without colliding with an object. Considering this sight distance, the calculation of the stopping sight distance of the vehicle is divided into two parts: the perception and reaction distance, and the braking distance [16].

\[
SSD = 1.47 Vt + \frac{V^2}{30(\frac{a}{g}) \pm G}
\]
Here,

\[v = \text{Speed when brakes applied} \]

\[t = \text{Perception reaction time} = 2.5s \]

\[a = \text{Vehicle acceleration} = 11.2 \text{ ft/s}^2 \]

\[g = \text{Acceleration of gravity} = 32.2 \text{ ft/s}^2 \]

\[G = \text{Grading} = 0 \text{ as the road is flat} \]

Unit

- mile per hour \((mph)\)
- Second \((s)\)
- Feet per square second \((ft/s^2)\)
- Feet per square second \((ft/s^2)\)
- No Unit

AASHTO (2001)

Taking 30 mph as the expected or 90-percentile speed, the stopping site distance would be-

\[
SSD = 1.47 \cdot v \cdot t + \frac{v^2}{30\left(\frac{a}{g} \pm G\right)}
\]

\[
SSD = 1.47 \times 30 \times 2.5 + \frac{30^2}{30\left(\frac{11.2}{32.2} \pm 0\right)}
\]

\[
= 110.25 + 86.25
\]

\[
= 196.5 \text{ ft.}
\]

Here,

\[v = 30 \text{ mph} \]

\[t = \text{Perception reaction time} = 2.5s \]

\[a = \text{Vehicle acceleration} = 11.2 \text{ ft/s}^2 \]

\[g = \text{Acceleration of gravity} = 32.2 \text{ ft/s}^2 \]

\[G = \text{Grading} = 0 \text{ as the road is flat} \]

Figure 19: Installation Schematics of the DRTRS, where, (1) Rumble device, (2) Control Cabinet, (3) Crosswalk, (4) Camera, (5) Poles with Push Button, (6) Pedestrian Crossing Signs.

The Distance between the center of the crosswalk (3) and the center of the rumble device (1) is 196.5 feet, and the design distance is 200 ft. [17]. Likewise, the distance between the center of the crosswalk (3) and the pedestrian crossing signs (6) should be between 20 to 40 ft. [18].

Prototyping and Testing of the Third Design

Appendix C provides a detailed Work Plan for the testing of the third design. By the time this report is due, we have completed building this prototype but have not begun testing. A future report submitted to the University Transportation Center administrators will include results from this test.
Similarly, Appendix D provides a survey questionnaire that will be used to collect data about peoples’ opinions and attitudes towards the DRTRS traffic safety device. Results from this survey and corresponding analysis will be included in a future report.

POTENTIAL PAYOFF FOR PRACTICE

Alternative Solutions
Other alternative engineering mechanisms, such as rapid-flashing beacons are unlikely to provide the same strong effects as the rumble strips, which is evidenced by fatalities that have occurred in areas with these beacons. One advantage of the proposed DRTRS is the level of rapid vibration/discomfort they produce. Hence, drivers are instinctively and immediately forced to regain their attention to the roadway, even before they see a pedestrian. This is the same proven effect as static transverse or shoulder rumble strips have on drivers. There is no similar product to DRTRS in the market. Available alternatives require drivers to look at the roadway and surrounding infrastructure. Distractions such as cell phone use, impaired driving, interaction with passengers, or external disturbances are frequent and preclude the intended effect of warning drivers about the presence of pedestrians on the roadway. The DRTRS creates the required effect even with driving distractions, as the vibration creates the involuntary reaction of regaining roadway attention. In addition, the audible sound warns pedestrians of the presence of a vehicle. Permanent or static rumble strips lose their effectiveness over time because drivers get used to or even try to avoid them [1] creating additional risks. By regaining the driver’s attention, we believe that existing safety improvements, such as rail road crossing arms and flashing beacons can be more effective.

Additional Applications of the Proposed Solution
In addition to pedestrian areas and intersections, there are several other applications of the DRTRS, including railroad crossings, tollbooths, and speed control zones, such as school zones. In the case of school zones, given that the DRTRS is only active during daytime hours, they can be placed in residential neighborhoods, whereas permanent rumbles cannot, due to nighttime noise. Recently, several accidents were attributed to inattentive drivers at these types of locations. The Amtrak accident on US 95A in Nevada where six people were killed is just one example[4]. As already mentioned, rapid-flashing beacons along with railroad crossing arms proved ineffective at regaining the drivers’ attention. On average, these devices cost well over $600,000 to install at each crossing. It is anticipated that our DRTRS, in addition to these devices, will be effective at regaining distracted drivers’ attention for only an additional fraction of the overall cost of these standard installations. In terms of financial setback to the community, a fatality is estimated to cost more than $5.5M. Similarly, the cost of injuries is extremely high, according to the Highway Safety Manual. On average, a single injury is likely to be more expensive than the cost of the proposed DRTRS.

TRANSFER TO PRACTICE
We are working with the Nevada Division Office of the Federal Highway Administration (FHWA) through an existing Stewardship & Oversight Agreement with NDOT. We have obtained the

required permission for the proposed on-the-road field testing and to move the technology forward after the objectives of this project are completed.

The UNLV Office of Economic Development (OED), as the designated intellectual property management organization of UNLV, will primarily lead efforts to achieve successful commercialization of intellectual property from this project. The primary commercialization strategy for the DRTRS technology will be to seek partnerships to expedite technology development, followed by the licensing of intellectual property resulting from the project. Specifically, the OED is working with the lead investigator to establish industry partnerships, public sector partnerships, research collaborations, and the licensing of intellectual property to a commercial partner, ideally with a Nevada presence, capable of fully exploiting the technology in the marketplace.

We are currently working closely with NDOT and the Nevada Governor’s Office of Economic Development (GOED), so that after successful testing, the DRTRS is adopted as a standard safety device. This is expected to translate into substantial traffic safety benefits, which include saving lives and reducing injuries and property damage, as well as other negative externalities associated with crashes, such as non-recurrent congestion and emissions.

In addition to the expected traffic safety benefits, this project includes a goal of enhancing economic growth within the State of Nevada. The project should result in the following returns on investment:

1. **Intellectual Property and Brand Value.** The proposed project will result in the creation, identification, and protection of new intellectual property in the form of patents and copyrights, visible participation in transportation safety projects with both regional and global applications, and recognition for Nevada as a leading innovator in the field of mobility and transportation solutions. Note that UNLV OED has filed a U.S. utility patent application [19] covering the DRTRS technology in anticipation of receiving adequate project funding to continue development and commercialization of the technology.

2. **Technology Transfer.** The licensing of project intellectual property will result in IP revenues, which over time, will provide a return to help sustain DRTRS technology research and innovation. The OED will seek licensees and partnerships with relevant companies and industries that might benefit from DRTRS technology.

3. **Start-up Acceleration & Industry Development.** Using lean start-up methodology, coupled with resources from the Nevada Small Business Development Center, the UNLV Center for Entrepreneurship, and students from the UNLV Lee School of Business, the OED will work to identify specific market applications as well as the suitability of the DRTRS technology as the basis of a Nevada-based start-up company. Furthermore, ongoing translational research, prototype development, field testing, and ultimately technology commercialization itself will be the significant direct drivers of regional economic and workforce development. We anticipate indirect impacts to the region as new DRTRS related products and services will be developed and commercialized by both existing and new companies to fully exploit the technology.

CONCLUSIONS AND NEXT STEPS

This study designed and evaluated three alternative mechanisms for the deployment of Demand Responsive Transverse Rumble Strips (DRTRS). A first prototype using an electric actuator was
tested on a private facility at the University of Nevada Las Vegas. The objective of the test was
to evaluate the level of vibration and noise generated by the DRTRS as well as durability and
reliability. Results illustrate the vibration and noise generated by the prototype. Our evaluation of
the three alternative mechanism concluded that an innovative hydraulically-activated design is
the best approach to deploy the DRTRS. The proposed DRTRS apparatus is modular, and the
mechanical components of the DRTRS units are reliable with few components. The hydraulic
system is expected to require some maintenance. However, this system is placed in a cabinet
outside of the travel lanes. The DRTRS deployment cost is comparable to existing solutions for
intersections, school zones, toll lanes, and speed control zones. A second prototype based on the
hydraulic system was built and it is about to be tested on a public facility at the University of
Nevada Las Vegas. Results from this testing will provide information about its effectiveness and
potential insights to further improve our design to make it even more cost and safety effective. A
future report will include these results and the corresponding analysis.
REFERENCES

APPENDIX A

Detailed design of the reinforced concrete box that houses the Unit Box Beams and Roller Assemblies for the first Design of the DRTRS
GENERAL NOTES

GENERAL NOTES ARE GENERAL AND APPLY TO THE COMPLETE PROJECT UNLESS SPECIFICALLY INDICATED OTHERWISE.

STRUCTURAL DIMENSIONS CONTRACTED BY OR RELATED TO MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING TYPES, AND ALL DRAWINGS SHALL BE COORDINATED TO ENSURE ACCURACY OF PLACEMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.

MACHINICAL, ELECTRICAL, AND OTHER EQUIPMENT SUPPORTS, ANCHORAGE, AND SUPPORT SYSTEMS SHOWN ON THE STRUCTURAL DRAWING BUT NOT INCLUDED IN OTHER CONTRACT DRAWINGS, SHALL BE PROVIDED BY MANUFACTURERS OF EQUIPMENT.
UNLV

DRT Rumble Strip Box
Structural Analysis & Design

STRUCTURAL CALCULATIONS
Draft

May 14, 2018
UNLV College of Engineering
DRT Rumble Strip Box
JOB NO. 181307096

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>GENERAL</td>
<td>100.1-100.23</td>
</tr>
<tr>
<td></td>
<td>Design Criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rumble Strip Dimensions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loads Summary</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>FOUNDATION BEAM AND SLAB</td>
<td>200.1-200.37</td>
</tr>
<tr>
<td></td>
<td>Beam and Slab Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAFE Foundation Analysis Results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design of 8” Reinforced Concrete Base Slab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design of 7” Wide Full Depth Concrete Beam</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>STEM WALL</td>
<td>300.1-300.15</td>
</tr>
<tr>
<td></td>
<td>Design of 7”Wx9”H Internal Stem Wall for Breaking Force</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design of 7”Wx9”H Edge Stem Wall for Breaking Force Tire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stopping Force Kinetic Energy & Impulse Momentum Force on Stem Wall</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>EMBED ANGLE</td>
<td>400.1-400.17</td>
</tr>
<tr>
<td></td>
<td>Embed Angle Design for Breaking Force</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>CRANE PICK POINT CONNECTION DESIGN</td>
<td>500.1-500.14</td>
</tr>
<tr>
<td></td>
<td>Pick Point Connection Design</td>
<td></td>
</tr>
</tbody>
</table>

Stantec
3010 W. Charleston Blvd.
Suite 100
Las Vegas, NV 89102

Calculations by: Iani Batilov, P.E.
Checked by: Douglas Rounds, P.E., S.E.
SECTION 100
GENERAL
This design criterion applies to all structures.

DESIGN CALCULATIONS, METHODS, AND ASSUMPTIONS

Calculations will be done in accordance with the Stantec Best Practices – Structural Calculation Procedures. A title page and table of contents shall be included for each set of calculations greater than five sheets long.

Structures shall be designed in accordance with sound engineering principles based on the references listed below.

DESIGN REFERENCES:

- **2012 IBC**
 International Code Committee (ICC) - International Building Code
- **ASCE 7-10**
 Minimum Design Loads For Buildings and Other Structures LRFD
- **AASHTO 2012**
 Bridge Design Specifications
- **AISC 360-10**
 Specification for Structural Steel Buildings Seismic
- **AISC 341-10**
 Provisions for Structural Steel Buildings Structural
- **AWS D1.1-04**
 Welding Code – Steel
- **ACI 318-11**
 Building Code Requirements for Structural Concrete
DESIGN INFORMATION AND

1. The reinforced concrete box houses 5 rumble strip mechanisms. Refer to Dimensions summary sheet.

2. The reinforced concrete box has been analyzed as a spread footing foundation with superimposed HL-93 traffic loading mimicking governing design truck or design tandem loads.
LOADING

Live loads:
- HL-93 Design Truck: 8.0 kip Front Axles; 32 kip Back Axles (Max)
- HL-93 Design Tandem: 25 kip axles
- Tire Contact Area: 10”x20”

Note:

GEOTECHNICAL

Allowable Bearing Pressure:

- Based on IBC Section 1806: 3000 psf on Sandy Gravel and/or Gravel

Groundwater Elevation:

- Not encountered

Friction Factor:

- Based on IBC Section 1806: 0.35

Soil Weight:

- Structural fill/ native gravels: 130 pcf
STRUCTURAL

<table>
<thead>
<tr>
<th>Concrete:</th>
<th>4500 psi - STRUCTURAL (all structural applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcing:</td>
<td>Grade 60 - all applications.</td>
</tr>
<tr>
<td>Steel:</td>
<td>Wide Flange Shapes - ASTM A992 Angles and C Channels – ASTM A36 Structural Tubing - ASTM A500, Grade B Plates - ASTM A36</td>
</tr>
</tbody>
</table>
Structural Design Criteria

Client: UNLV College of Engineering
Project: DRT Rumble Strip Box

Weights of

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>150</td>
</tr>
<tr>
<td>CMU</td>
<td>125</td>
</tr>
<tr>
<td>Steel</td>
<td>490</td>
</tr>
</tbody>
</table>

Safety Factors

<table>
<thead>
<tr>
<th>Category</th>
<th>Overturning Factor</th>
<th>Sliding Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoyancy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overturning</td>
<td>1.50 Static Loads</td>
<td>1.10 Seismic Loads</td>
</tr>
<tr>
<td>Sliding</td>
<td>1.50 Static Loads</td>
<td>1.10 Seismic Loads</td>
</tr>
</tbody>
</table>

Other

Demand Responsive Transverse Rumble Strip (DRTRS) – “Sky view”

A = Distance from the edge of the housing box to a rumble
B = Length of a DRTRS => min = 10 ft – 2*A; Max = 12 ft – 2*A
C = Width of a DRTRS = 5 inches
D = Gap between two DRTRS = 7 inches
E = Center to center distance between two DRTRS = 12 inches
G = Distance from the left lane mark to the housing box
H = Distance between two adjacent housing boxes
S = Shoulder with

L = Length of the housing box for a set of DRTRS
W = Width of the housing box for a set of DRTRS
SSD = Stopping sight distance

- Permanent rumble strips on the housing box
- Permanent rumble strips on the pavement and shoulder

R = Maximum depth of the rumbles = 0.5 inches
The DRT Rumble Strip will be installed level with street edge and bear on subgrade. One full DRT Assembly will house (5) hydraulic mechanisms ~10' long x 5' wide x 3' deep housed in a steel lined pocket and all encased in a concrete box. The box needs to be designed for HL-93 traffic loading per AASHTO and applicable self-weight in the load case. It is crane hoisted and installed. Client also requests that rumble strip can support a 125 psi super axle type loading.

Rumble Strip Section

Traffic Loading (LL)

HL-93

- Design Trunk (32k Axle Max)
- Design Tandem (Pair of 25k Axles ~11.0" apart)

Tire Area: 10" x 20" (Single or Double Tire)
DYNAMIC LOAD ALLOWANCE (IM)

The dynamic load is a factor applied to the static design truck and design tandem loads part of vehicular live loads (LL).

For Table 3.6.2.1-1, for all other components besides deck joints, IM is 2.5%. So IM factor is:

\[IM = \frac{1}{1 + (IM/100)} \]

\[= \frac{1}{1 + (2.5/100)} \]

\[= 1.33 \]

DEAD LOAD OF STRUCTURAL COMPONENTS (DL)

\[V_{steel} = 490 \text{ klf} = 0.284 \text{ kN/m}^2 \]

The number strip beam: 6\(\times\)6\(\times\)1\(\frac{1}{4}\), \(W_o = 17.32 \text{ klf} \)

Ledge embedment angles: 1\(\frac{3}{4}\)\(\times\)3\(\frac{1}{4}\), \(W_b = 4.90 \text{ klf} \)

Bottom of channel: \(\frac{1}{2}\)\(\times\)5\(\frac{1}{8}\) as applied \(W_k = 8.52 \text{ klf} \)

(2) Side framing: \(\frac{1}{2}\)\(\times\)1\(\frac{1}{8}\) as applied \(W_b = 5.33 \text{ klf} \)

Assuming 12 ft long \(\times\) 5.5 ft wide \(\times\) 17" deep concrete beam, \(V_{concrete} = 150 \text{ klf} \)

\[DL_{concrete} = 0.015 \left[\left(\frac{12}{12.73} \right) - \left(\frac{5.5}{12.73} \right) \right] \left(\frac{17}{12.73} \right) \]

\[= 0.015 \left(7.75 \times 10^{-2} - 1.5 \right) (150 \text{ klf}) = 935 \text{ klf} \]

BREAKING FORCE (BR)

Taken as 25% of axles weights of design truck (22 k axle LL)

\[= 0.25 \text{ klf} \text{/axle} \times 6 \text{ klf} \text{/axle} = 0.3 \text{ klf/mm}^2 \]

\[\text{OK - } 5\% \text{ of } (\text{tongue + lane load } (640 \text{ klf}) = \text{BR} \]

\[BR = 0.25 (22k) = 2k \text{ /axle} = 4k \text{ /tire area} \]

\[= 0.25 (25k) = 6.25k \text{ /axle} = 3.13 \text{ /tire area} \]

\[= 0.08 (32k) = 1.6k \text{ /axle} = 0.8k \text{ /tire area} + 0.64k \text{ /tire area} \]

\[\text{25% of design truck governs } 4k \text{ /tire area, presented as a PSF} \]

\[\text{Horizontal force, } FR = \frac{4k (1000 \%)}{(20^\circ)(10^\circ) / 114} = 2880 \text{ PSF} \]
THE LOAD COMBINATIONS PER AASHTO:

STRENGTH I: \(1.25(D_C) + 1.75(LL + IM + BR)\) - governs factored design

SERVICE II: \(1.00(D_C) + 1.30(LL + IM + BR)\)

LOAD COMBINATIONS PER AASHTO 318-11:

1.4D (governs for DL only)

1.2D + 1.0L

LOAD SCENARIOS

CASE 1: Rumble strip is craned, loading is due to dead load only, reactions at anchor points (pinned connection), 1.4DL governs

CASE 2: Rumble strip is installed and subjected to traffic loading. Soil pushes up against box due to tire bearing pressure and box self wt. Governing factored load is: \(1.25(D_C) + 1.75(LL + IM + BR)\)
\[\beta' \] = slope of ground surface in front of wall {+ for slope up from wall; \(- \) for slope down from wall} (degrees)
\(\gamma \) = load factors; unit weight of materials (kcf); unit weight of water (kcf); unit weight of soil (kcf) (3.11.5.6)
\(\gamma_s \) = unit weight of soil (kcf) (3.11.5.1)
\(\gamma_s' \) = effective soil unit weight (kcf) (3.11.5.6)
\(\lambda_{EQ} \) = load factor for live load applied simultaneously with seismic loads (3.4.1)
\(\lambda_{eq} \) = equivalent-fluid unit weight of soil (kcf) (3.11.5.5)
\(\lambda_1 \) = load factor (3.4.1)
\(\lambda_p \) = load factor for permanent loading (3.4.1)
\(\lambda_{SE} \) = load factor for settlement (3.4.1)
\(\lambda_{TG} \) = load factor for temperature gradient (3.4.1)
\(\Delta \) = movement of top of wall required to reach minimum active or maximum passive pressure by tilting or lateral translation (ft) (C3.11.1) (3.11.5.5)
\(\Delta_p \) = constant horizontal earth pressure due to uniform surcharge (ksf) (3.11.6.1)
\(\Delta_{ph} \) = constant horizontal pressure distribution on wall resulting from various types of surcharge loading (ksf) (3.11.6.2)
\(\Delta_T \) = design thermal movement range (in.) (3.12.2.3)
\(\Delta_{OH} \) = horizontal stress due to surcharge load (ksf) (3.11.6.3)
\(\Delta_{OV} \) = vertical stress due to surcharge load (ksf) (3.11.6.3)
\(\delta \) = angle of truncated ice wedge (degrees); friction angle between fill and wall (degrees); angle between foundation wall and a line connecting the point on the wall under consideration and a point on the bottom corner of the footing furthest from the wall (rad) (C3.9.5) (3.11.5.3) (3.11.6.2)
\(\eta_i \) = load modifier specified in Article 1.3.2; wall face batter (3.4.1) (3.11.5.9)
\(\theta \) = angle of back of wall to the horizontal (degrees); angle of channel turn or bend (degrees); angle between direction of stream flow and the longitudinal axis of pier (degrees) (3.11.5.3) (3.14.5.2.3) (3.7.3.2)
\(\theta_f \) = friction angle between ice floe and pier (degrees) (3.9.2.14.1)
\(\sigma \) = standard deviation of normal distribution (3.14.5.3)
\(\sigma_T \) = tensile strength of ice (ksf) (C3.9.5)
\(v \) = Poisson's Ratio (dim.) (3.11.6.2)
\(\psi \) = resistance factors (C3.4.1)
\(\psi_f \) = angle of internal friction (degrees) (3.11.5.4)
\(\psi_{f_c} \) = effective angle of internal friction (degrees) (3.11.5.2)
\(\psi_i \) = internal friction angle of reinforced fill (degrees) (3.11.6.3)
\(\psi_s \) = angle of internal friction of retained soil (degrees) (3.11.5.6)

3.3.2—Load and Load Designation

The following permanent and transient loads and forces shall be considered:

- **Permanent Loads**

 \(CR = \) force effects due to creep
 \(DD = \) downdrag force
 \(DC = \) dead load of structural components and nonstructural attachments
 \(DW = \) dead load of wearing surfaces and utilities
 \(EH = \) horizontal earth pressure load
 \(EL = \) miscellaneous locked-in force effects resulting from the construction process, including jacking apart of cantilevers in segmental construction
 \(ES = \) earth surcharge load
 \(EV = \) vertical pressure from dead load of earth fill
PS = secondary forces from post-tensioning
SH = force effects due to shrinkage

- Transient Loads
 BL = blast loading
 BR = vehicular braking force
 CE = vehicular centrifugal force
 CT = vehicular collision force
 CV = vessel collision force
 EQ = earthquake load
 FR = friction load
 IC = ice load
 IM = vehicular dynamic load allowance
 LL = vehicular live load
 LS = live load surcharge
 PL = pedestrian live load
 SE = force effect due to settlement
 TG = force effect due to temperature gradient
 TU = force effect due to uniform temperature
 WA = water load and stream pressure
 WL = wind on live load
 WS = wind load on structure

3.4—LOAD FACTORS AND COMBINATIONS

3.4.1—Load Factors and Load Combinations

The total factored force effect shall be taken as:

\[Q = \Sigma \eta_i \gamma_i \bar{Q}_i \] \hspace{1cm} (3.4.1-1)

where:

- \(\eta_i \) = load modifier specified in Article 1.3.2
- \(\bar{Q}_i \) = force effects from loads specified herein
- \(\gamma_i \) = load factors specified in Tables 3.4.1-1 and 3.4.1-2

Components and connections of a bridge shall satisfy Eq. 1.3.2.1-1 for the applicable combinations of factored extreme force effects as specified at each of the following limit states:

- Strength I—Basic load combination relating to the normal vehicular use of the bridge without wind.
- Strength II—Load combination relating to the use of the bridge by Owner-specified special design vehicles, evaluation permit vehicles, or both without wind.
- Strength III—Load combination relating to the bridge exposed to wind velocity exceeding 55 mph.

C3.4.1

The background for the load factors specified herein, and the resistance factors specified in other Sections of these Specifications is developed in Nowak (1992).

The permit vehicle should not be assumed to be the only vehicle on the bridge unless so assured by traffic control. See Article 4.6.2.2.5 regarding other traffic on the bridge simultaneously.

Vehicles become unstable at higher wind velocities. Therefore, high winds prevent the presence of significant live load on the bridge.
The load factor for settlement, γ_{SL}, should be considered on a project-specific basis. In lieu of project-specific information to the contrary, γ_{SL} may be taken as 1.0. Load combinations which include settlement shall also be applied without settlement.

For segmentally constructed bridges, the following combination shall be investigated at the service limit state:

$$DC + DW + EH + EV + ES + WA + CR + SH + TG + EL + PS$$

(3.4.1-2)

Table 3.4.1-1—Load Combinations and Load Factors

| Load Combination Limit State | DC | DD | DW | EH | EV | ES | EL | CE | PS | BR | PL | SH | LS | WA | WS | WL | FR | TU | TG | SE | EQ | BL | IC | CT | CV |
|-----------------------------|
| Strength I (unless noted) | γ_p | 1.75 | 1.00 | — | — | — | — | — | — | — | — | — | — | 1.00 | 0.50/1.20 | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Strength II | γ_p | 1.35 | 1.00 | — | — | — | — | — | — | — | — | — | — | 1.00 | 0.50/1.20 | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Strength III | γ_p | — | 1.00 | 1.4 | — | 1.00 | 0.50/1.20 | — | — | — | — | — | — | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Strength IV | γ_p | — | 1.00 | — | — | 1.00 | 0.50/1.20 | — | — | — | — | — | — | — | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Strength V | γ_p | 1.35 | 1.00 | 0.4 | 0.50 | — | 1.00 | 0.50/1.20 | — | — | — | — | — | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Extreme Event I | γ_p | γ_{EQ} | 1.00 | — | — | 1.00 | — | — | — | — | 1.00 | 1.00 | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Extreme Event II | γ_p | 0.50 | 1.00 | — | 1.00 | — | — | — | 1.00 | 1.00 | 1.00 | 1.00 | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Service I | 1.00 | 1.00 | 1.00 | 0.3 | 1.00 | 1.00 | 1.00 | — | — | — | — | — | — | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Service II | 1.00 | 1.30 | 1.00 | — | 1.00 | 1.00 | 1.00 | — | — | — | — | — | — | — | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Service III | 1.00 | 0.80 | 1.00 | — | 1.00 | 1.00 | 1.00 | — | — | — | — | — | — | — | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Service IV | 1.00 | — | 1.00 | 0.7 | 1.00 | 1.00 | 1.00 | — | 1.00 | — | — | — | — | — | γ_{LS} | γ_{SE} | γ_{EQ} | γ_{BL} | γ_{IC} | γ_{CT} | γ_{CV} |
| Fatigue I— | — | 1.50 | — |
| $LL, IM & CE only$ | — | 0.75 | — |
Table 3.4.1-2—Load Factors for Permanent Loads, γ_p

<table>
<thead>
<tr>
<th>Type of Load, Foundation Type, and Method Used to Calculate Downdrag</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
</tr>
<tr>
<td>DC: Component and Attachments</td>
<td>1.25</td>
</tr>
<tr>
<td>DC: Strength IV only</td>
<td>1.50</td>
</tr>
<tr>
<td>DD: Downdrag</td>
<td>1.40</td>
</tr>
<tr>
<td>Piles, α Tomlinson Method</td>
<td>1.05</td>
</tr>
<tr>
<td>Piles, λ Method</td>
<td>1.25</td>
</tr>
<tr>
<td>Drilled shafts, O'Neill and Reese (1999) Method</td>
<td></td>
</tr>
<tr>
<td>DW: Wearing Surfaces and Utilities</td>
<td>1.50</td>
</tr>
<tr>
<td>EH: Horizontal Earth Pressure</td>
<td></td>
</tr>
<tr>
<td>• Active</td>
<td>1.50</td>
</tr>
<tr>
<td>• At-Rest</td>
<td>1.35</td>
</tr>
<tr>
<td>• AEP for anchored walls</td>
<td>1.35</td>
</tr>
<tr>
<td>EL: Locked-in Construction Stresses</td>
<td>1.00</td>
</tr>
<tr>
<td>EV: Vertical Earth Pressure</td>
<td></td>
</tr>
<tr>
<td>• Overall Stability</td>
<td>1.00</td>
</tr>
<tr>
<td>• Retaining Walls and Abutments</td>
<td>1.35</td>
</tr>
<tr>
<td>• Rigid Buried Structure</td>
<td>1.30</td>
</tr>
<tr>
<td>• Rigid Frames</td>
<td>1.35</td>
</tr>
<tr>
<td>• Flexible Buried Structures</td>
<td></td>
</tr>
<tr>
<td>o Metal Box Culverts and Structural Plate Culverts with Deep Corrugations</td>
<td>1.5</td>
</tr>
<tr>
<td>o Thermoplastic culverts</td>
<td>1.3</td>
</tr>
<tr>
<td>o All others</td>
<td>1.95</td>
</tr>
<tr>
<td>ES: Earth Surcharge</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Table 3.4.1-3—Load Factors for Permanent Loads Due to Superimposed Deformations, γ_p

<table>
<thead>
<tr>
<th>Bridge Component</th>
<th>PS</th>
<th>CR, SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superstructures—Segmental</td>
<td>1.0</td>
<td>See γ_p for DC, Table 3.4.1-2</td>
</tr>
<tr>
<td>Concrete Substructures supporting Segmental Superstructures (see 3.12.4, 3.12.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Superstructures—non-segmental</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Substructures supporting non-segmental Superstructures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• using I_E</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>• using $I_{\text{effective}}$</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Steel Substructures</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
3.6.1.2—Design Vehicular Live Load

3.6.1.2.1—General

Vehicular live loading on the roadways of bridges or incidental structures, designated HL-93, shall consist of a combination of the:

- Design truck or design tandem, and
- Design lane load.

Except as modified in Article 3.6.1.3.1, each design lane under consideration shall be occupied by either the design truck or tandem, coincident with the lane load, where applicable. The loads shall be assumed to occupy 10.0 ft transversely within a design lane.

The multiple presence factors in Table 3.6.1.1.2-1 were developed on the basis of an ADTT of 5,000 trucks in one direction. The force effect resulting from the appropriate number of lanes may be reduced for sites with lower ADTT as follows:

- If $100 \leq ADTT \leq 1,000$, 95 percent of the specified force effect may be used; and
- If $ADTT < 100$, 90 percent of the specified force effect may be used.

This adjustment is based on the reduced probability of attaining the design event during a 75-year design life with reduced truck volume.

C3.6.1.2.1

Consideration should be given to site-specific modifications to the design truck, design tandem, and/or the design lane load under the following conditions:

- The legal load of a given jurisdiction is significantly greater than typical;
- The roadway is expected to carry unusually high percentages of truck traffic;
- Flow control, such as a stop sign, traffic signal, or toll booth, causes trucks to collect on certain areas of a bridge or to be interrupted by light traffic; or
- Special industrial loads are common due to the location of the bridge.

See also discussion in Article C3.6.1.3.1.

The live load model, consisting of either a truck or tandem coincident with a uniformly distributed load, was developed as a notional representation of shear and moment produced by a group of vehicles routinely permitted on highways of various states under “grandfather” exclusions to weight laws. The vehicles considered to be representative of these exclusions were based on a study conducted by the Transportation Research Board (Cohen, 1990). The load model is called “notional” because it is not intended to represent any particular truck.

In the initial development of the notional live load model, no attempt was made to relate to escorted permit loads, illegal overloads, or short duration special permits. The moment and shear effects were subsequently compared to the results of truck weight studies (Csagoly and Knobel, 1981; Nowak, 1992), selected WIM data, and the 1991 OHBDC live load model. These subsequent comparisons showed that the notional load could be scaled by appropriate load factors to be representative of these other load spectra.
The following nomenclature applies to Figures C3.6.1.2.1-1 through C3.6.1.2.1-6, which show results of live load studies involving two equal continuous spans or simple spans:

\[M_{POS\ 0.4L} = \text{positive moment at 4/10 point in either span} \]

\[M_{NEG\ 0.4L} = \text{negative moment at 4/10 point in either span} \]

\[M_{SUPPORT} = \text{moment at interior support} \]

\[V_{ab} = \text{shear adjacent to either exterior support} \]

\[V_{ba} = \text{shear adjacent to interior support} \]

\[M_{ss} = \text{midspan moment in a simply supported span} \]

The "span" is the length of the simple-span or of one of each of the two continuous spans. The comparison is in the form of ratios of the load effects produced in either simple-span or two-span continuous girders. A ratio greater than 1.0 indicates that one or more of the exclusion vehicles produces a larger load effect than the HS20 loading. The figures indicate the degree by which the exclusion loads deviate from the HS loading of designation, e.g., HS25.

Figures C3.6.1.2.1-1 and C3.6.1.2.1-2 show moment and shear comparisons between the envelope of effects caused by 22 truck configurations chosen to be representative of the exclusion vehicles and the HS20 loading, either the HS20 truck or the lane load, or the interstate load consisting of two 24.0-kip axles 4.0 ft apart, as used in previous editions of the AASHTO Standard Specifications. The largest and smallest of the 22 configurations can be found in Kulicki and Mertz (1991). In the case of negative moment at an interior support, the results presented are based on two identical exclusion vehicles in tandem and separated by at least 50.0 ft.
Figures C.3.6.1.2.1-1 and C.3.6.1.2.1-2 show comparisons between the force effects produced by a single exclusion truck per lane and the notional load model, except for negative moment, where the tandem exclusion vehicles were used. In the case of negative moment at a support, the provisions of Article 3.6.1.3.1 requiring investigation of 90 percent of the effect of two design trucks, plus 90 percent of the design lane load, has been included in Figures C.3.6.1.2.1-3 and C.3.6.1.2.1-5. Compared with Figures C.3.6.1.2.1-1 and C.3.6.1.2.1-2, the range of ratios can be seen as more closely grouped:

- Over the span range,
- Both for shear and moment, and
- Both for simple-span and continuous spans.

The implication of close grouping is that the notional load model with a single-load factor has general applicability.
Figure C3.6.1.2.1.3—Moment Ratios: Exclusion Vehicles to Notional Model

Figure C3.6.1.2.1.4—Shear Ratios: Exclusion Vehicles to Notional Model

Figures C3.6.1.2.1.5 and C3.6.1.2.1.6 show the ratios of force effects produced by the notional load model and the greatest of the HS20 truck or lane loading, or Alternate Military Loading.
3.6.1.2.2—Design Truck

The weights and spacings of axles and wheels for the design truck shall be as specified in Figure 3.6.1.2.2-1. A dynamic load allowance shall be considered as specified in Article 3.6.2.

Except as specified in Articles 3.6.1.3.1 and 3.6.1.4.1, the spacing between the two 32.0-kip axles shall be varied between 14.0 ft and 30.0 ft to produce extreme force effects.

In reviewing Figures C3.6.1.2.1-5 and C3.6.1.2.1-6, it should be noted that the total design force effect is also a function of load factor, load modifier, load distribution, and dynamic load allowance.
Figure 3.6.1.2.2-1—Characteristics of the Design Truck

3.6.1.2.3—Design Tandem

The design tandem shall consist of a pair of 25.0-kip axles spaced 4.0 ft apart. The transverse spacing of wheels shall be taken as 6.0 ft. A dynamic load allowance shall be considered as specified in Article 3.6.2.

3.6.1.2.4—Design Lane Load

The design lane load shall consist of a load of 0.64 klf uniformly distributed in the longitudinal direction. Transversely, the design lane load shall be assumed to be uniformly distributed over a 10.0-ft width. The force effects from the design lane load shall not be subject to a dynamic load allowance.

3.6.1.2.5—Tire Contact Area

The tire contact area of a wheel consisting of one or two tires shall be assumed to be a single rectangle, whose width is 20.0 in. and whose length is 10.0 in.

The tire pressure shall be assumed to be uniformly distributed over the contact area. The tire pressure shall be assumed to be distributed as follows:

- On continuous surfaces, uniformly over the specified contact area, and
- On interrupted surfaces, uniformly over the actual contact area within the footprint with the pressure increased in the ratio of the specified to actual contact areas.

For the design of orthotropic decks and wearing surfaces on orthotropic decks, the front wheels shall be assumed to be a single rectangle whose width and length are both 10.0 in. as specified in Article 3.6.1.4.1.

C3.6.1.2.5

The area load applies only to the design truck and tandem. For other design vehicles, the tire contact area should be determined by the engineer.

As a guideline for other truck loads, the tire area in in.\(^2\) may be calculated from the following dimensions:

\[
\text{Tire width} = P/0.8 \\
\text{Tire length} = 6.4\gamma(1 + IM/100)
\]

where:

\[
\gamma = \text{load factor} \\
IM = \text{dynamic load allowance percent} \\
P = \text{design wheel load (kip)}
\]
3.6.1.2.6—Distribution of Wheel Loads through Earth Fills

Where the depth of fill is less than 2.0 ft, live loads shall be distributed to the top slabs of culverts as specified in Article 4.6.2.10.

In lieu of a more precise analysis, or the use of other acceptable approximate methods of load distribution permitted in Section 12, where the depth of fill is 2.0 ft or greater, wheel loads may be considered to be uniformly distributed over a rectangular area with sides equal to the dimension of the tire contact area, as specified in Article 3.6.1.2.5, and increased by either 1.15 times the depth of the fill in select granular backfill, or the depth of the fill in all other cases. The provisions of Articles 3.6.1.1.2 and 3.6.1.3 shall apply.

Where such areas from several wheels overlap, the total load shall be uniformly distributed over the area.

For single-span culverts, the effects of live load may be neglected where the depth of fill is more than 8.0 ft and exceeds the span length; for multiple span culverts, the effects may be neglected where the depth of fill exceeds the distance between faces of end walls.

Where the live load and impact moment in concrete slabs, based on the distribution of the wheel load through earth fills, exceeds the live load and impact moment calculated according to Article 4.6.2.10, the latter moment shall be used.

3.6.1.3—Application of Design Vehicular Live Loads

3.6.1.3.1—General

Unless otherwise specified, the extreme force effect shall be taken as the larger of the following:

- The effect of the design tandem combined with the effect of the design lane load, or
- The effect of one design truck with the variable axle spacing specified in Article 3.6.1.2.2, combined with the effect of the design lane load, and

C3.6.1.2.6

Elastic solutions for pressures produced within an infinite half-space by loads on the ground surface can be found in Poulos and Davis (1974), NAVFAC DM-7.1 (1982), and soil mechanics textbooks.

This approximation is similar to the 60-degree rule found in many texts on soil mechanics. The dimensions of the tire contact area are determined at the surface based on the dynamic load allowance of 33 percent at depth = 0. They are projected through the soil as specified. The pressure intensity on the surface is based on the wheel load without dynamic load allowance. A dynamic load allowance is added to the pressure on the projected area. The dynamic load allowance also varies with depth as specified in Article 3.6.2.2. The design lane load is applied where appropriate and multiple presence factors apply.

This provision applies to relieving slabs below grade and to top slabs of box culverts.

Traditionally, the effect of fills less than 2.0 ft deep on live load has been ignored. Research (McGrath, et al. 2004) has shown that in design of box sections allowing distribution of live load through fill in the direction parallel to the span provides a more accurate design model to predict moment, thrust, and shear forces. Provisions in Article 4.6.2.10 provide a means to address the effect of shallow fills.

C3.6.1.3.1

The effects of an axle sequence and the lane load are superposed in order to obtain extreme values. This is a deviation from the traditional AASHTO approach, in which either the truck or the lane load, with an additional concentrated load, provided for extreme effects.

The lane load is not interrupted to provide space for the axle sequences of the design tandem or the design truck; interruption is needed only for patch loading patterns to produce extreme force effects.
Table 3.6.2.1-1—Dynamic Load Allowance, IM

<table>
<thead>
<tr>
<th>Component</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck Joints—All Limit States</td>
<td>75%</td>
</tr>
<tr>
<td>All Other Components:</td>
<td></td>
</tr>
<tr>
<td>• Fatigue and Fracture Limit State</td>
<td>15%</td>
</tr>
<tr>
<td>• All Other Limit States</td>
<td>33%</td>
</tr>
</tbody>
</table>

The application of dynamic load allowance for buried components, covered in Section 12, shall be as specified in Article 3.6.2.2.

Dynamic load allowance need not be applied to:

- Retaining walls not subject to vertical reactions from the superstructure, and
- Foundation components that are entirely below ground level.

The dynamic load allowance may be reduced for components, other than joints, if justified by sufficient evidence, in accordance with the provisions of Article 4.7.2.1.

- Dynamic response of the bridge as a whole to passing vehicles, which may be due to long undulations in the roadway pavement, such as those caused by settlement of fill, or to resonant excitation as a result of similar frequencies of vibration between bridge and vehicle.

Field tests indicate that in the majority of highway bridges, the dynamic component of the response does not exceed 25 percent of the static response to vehicles. This is the basis for dynamic load allowance with the exception of deck joints. However, the specified live load combination of the design truck and lane load, represents a group of exclusion vehicles that are at least 4/3 of those caused by the design truck alone on short- and medium-span bridges. The specified value of 33 percent in Table 3.6.2.1-1 is the product of 4/3 and the basic 25 percent.

Generally speaking, the dynamic amplification of trucks follows the following general trends:

- As the weight of the vehicle goes up, the apparent amplification goes down.
- Multiple vehicles produce a lower dynamic amplification than a single vehicle.
- More axles result in a lower dynamic amplification.

For heavy permit vehicles which have many axles compared to the design truck, a reduction in the dynamic load allowance may be warranted. A study of dynamic effects presented in a report by the Calibration Task Group (Nowak 1992) contains details regarding the relationship between dynamic load allowance and vehicle configuration.

This Article recognizes the damping effect of soil when in contact with some buried structural components, such as footings. To qualify for relief from impact, the entire component must be buried. For the purpose of this Article, a retaining type component is considered to be buried to the top of the fill.

3.6.2.2—Buried Components

The dynamic load allowance for culverts and other buried structures covered by Section 12, in percent, shall be taken as:

\[IM = 33(1.0 - 0.125D_{e}) \geq 0\% \quad (3.6.2.2-1) \]

where:

- \(D_{e} \) = the minimum depth of earth cover above the structure (ft)
3.6.2.3—Wood Components

Dynamic load allowance need not be applied to wood components.

3.6.3—Centrifugal Forces: CE

For the purpose of computing the radial force or the overturning effect on wheel loads, the centrifugal effect on live load shall be taken as the product of the axle weights of the design truck or tandem and the factor C, taken as:

\[C = f \frac{v^2}{gR} \]
(3.6.3-1)

where:

- \(v \) = highway design speed (ft/s)
- \(f \) = 4/3 for load combinations other than fatigue and 1.0 for fatigue
- \(g \) = gravitational acceleration: 32.2 (ft/s²)
- \(R \) = radius of curvature of traffic lane (ft)

Highway design speed shall not be taken to be less than the value specified in the current edition of the AASHTO publication, A Policy of Geometric Design of Highways and Streets.

The multiple presence factors specified in Article 3.6.1.1.2 shall apply.

Centrifugal forces shall be applied horizontally at a distance 6.0 ft above the roadway surface. A load path to carry the radial force to the substructure shall be provided.

The effect of superelevation in reducing the overturning effect of centrifugal force on vertical wheel loads may be considered.

3.6.4—Braking Force: BR

The braking force shall be taken as the greater of:

- 25 percent of the axle weights of the design truck or design tandem or,
- Five percent of the design truck plus lane load or five percent of the design tandem plus lane load

C3.6.3

Wood structures are known to experience reduced dynamic wheel load effects due to internal friction between the components and the damping characteristics of wood. Additionally, wood is stronger for short duration loads, as compared to longer duration loads. This increase in strength is greater than the increase in force effects resulting from the dynamic load allowance.

C3.6.4

Centrifugal force is not required to be applied to the design lane load, as the spacing of vehicles at high speed is assumed to be large, resulting in a low density of vehicles following and/or preceding the design truck. For all other consideration of live load other than for fatigue, the design lane load is still considered even though the centrifugal effect is not applied to it.

The specified live load combination of the design truck and lane load, however, represents a group of exclusion vehicles that produce force effects of at least 4/3 of those caused by the design truck alone on short- and medium-span bridges. This ratio is indicated in Eq. 3.6.3-1 for the service and strength limit states. For the fatigue and fracture limit state, the factor 1.0 is consistent with cumulative damage analysis. The provision is not technically perfect, yet it reasonably models the representative exclusion vehicle traveling at design speed with large headways to other vehicles. The approximation attributed to this convenient representation is acceptable in the framework of the uncertainty of centrifugal force from random traffic patterns.

1.0 ft/s = 0.682 mph

Centrifugal force also causes an overturning effect on the wheel loads because the radial force is applied 6.0 ft above the top of the deck. Thus, centrifugal force tends to cause an increase in the vertical wheel loads toward the outside of the bridge and an unloading of the wheel loads toward the inside of the bridge. Superelevation helps to balance the overturning effect due to the centrifugal force and this beneficial effect may be considered. The effects due to vehicle cases with centrifugal force effects included should be compared to the effects due to vehicle cases with no centrifugal force, and the worst case selected.
This braking force shall be placed in all design lanes which are considered to be loaded in accordance with Article 3.6.1.1.1 and which are carrying traffic headed in the same direction. These forces shall be assumed to act horizontally at a distance of 6.0 ft above the roadway surface in either longitudinal direction to cause extreme force effects. All design lanes shall be simultaneously loaded for bridges likely to become one-directional in the future.

The multiple presence factors specified in Article 3.6.1.1.2 shall apply.

where a is the length of uniform deceleration and b is the fraction. Calculations using a braking length of 400 ft and a speed of 55 mph yield $b = 0.25$ for a horizontal force that will act for a period of about 10 s. The factor b applies to all lanes in one direction because all vehicles may have reacted within this time frame.

For short- and medium-span bridges, the specified braking force can be significantly larger than was required in the Standard Specifications. The braking force specified in the Standard Specifications dates back to at least the early 1940's without any significant changes to address the improved braking capacity of modern trucks. A review of other bridge design codes in Canada and Europe showed that the braking force required by the Standard Specification is much lower than that specified in other design codes for most typical bridges. One such comparison is shown in Figure C3.6.4-1.

Figure C3.6.4-1—Comparison of Braking Force Models
The analysis of the rumble strip box has been analyzed in SAFE 2016 Foundation Analysis Program. The box modeled as 8" mat at 12'-0" x 5'-0" w / 8' high stem wall. The soil subgrade modulus selected is at the low end of asphalt fair. Rumbled soil quality.

Two cases of the load combination 1.25DL + 1.75(LL+IM) were ran:
- 13.6(LL+IM) 6'-0"
- 17.5(LL+IM) 6'-0"

Case I: 12'-0" beam length.

Design Task:

Loading:

- 9'-0" wide
- Concrete strip beam between mechanism pockets

Concrete Strip Beam Design:

- The concrete strip beam between each mechanism will be designed as a stand-alone beam to size longitudinal reinforcement.

Dead Load (DL):

- Assume the beam on the right is solid
- Concrete including the 5'-0" road width

\[
DL_{total} = \left(\frac{7'+5'}{12'} \right) \left(\frac{3'+8'}{12'} \right) (150 \text{ lb/ft})
\]

= 230 lb/ft

1.25DL = 1.25 (230 lb/ft) = 288 lb/ft

Traffic Loads + IM (LL+IM):

- 62.5 design truck (52 k axle) over 3.5' wheel load
- Equivalent to 10 k wheel load

\[
LL+IM = 1.25 (16 k) = 21.28 k / \text{lane}
\]

1.75(LL+IM) = 1.75 (21.28 k) = 37.24 k

References:

- 2" layer per ACI 318-11 7.7.1
- Same thickness will be in contact with earth flush not cast against it.
Based on the safe analysis, the following are the flexural shear demands. Note design strips are 6" along X-axis and 12" along Y-axis.

Along the 12'-0" length of the box (X-axis), 6" design strip:
\[M_y = 0.8897 \text{ k-ft} \] (Strength I LC - See Fig. 17) for 6" design strip
\[V_y = 0.771 \text{ k} \] (Strength I LC - See Fig. 14) for 6" design strip

Along the 5'-7" width of the box (Y-axis), 12" design strip:
\[M_x = 8.001 \text{ k-ft} \] (Strength I LC - Figure 15)
\[V_x = 6.249 \text{ k} \] (Strength I LC - Figure 16)
Box Dimensions
- 8” Base Slab 12'-0" x 5'-6"
- 7”W x 9”H Stem Walls
Materials: 4500 psi Concrete
- A615 Gr.60 Reinforcement
1 Soil Subgrade Properties

Chosen from *NHI-05-037 - Geotech - Bridges & Structures - Federal Highway Administration*

Conservatively the lower bound of FAIR roadbed soil quality selected: 250 lbf/in²/in = 432000 lbf/ft²/ft

Table 5-46. Suggested ranges for modulus of subgrade reaction for design (AASHTO, 1993).

<table>
<thead>
<tr>
<th>Roadbed Soil Quality</th>
<th>Range for k_eff (pci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td>> 550</td>
</tr>
<tr>
<td>Good</td>
<td>400 - 500</td>
</tr>
<tr>
<td>Fair</td>
<td>250 - 350</td>
</tr>
<tr>
<td>Poor</td>
<td>150 - 250</td>
</tr>
<tr>
<td>Very Poor</td>
<td>< 150</td>
</tr>
</tbody>
</table>

![Soil Subgrade Property Data](image)
2 Loading Criteria
The Rumble Strip Box loads are self-weight (D) and superimposed traffic loads (LL+IM) equivalent to the (1.33*16 K) calculated separately as 21.28 k/tire area applied 6 ft apart per the AASHTO HL-93 axle width in two cases.

The following Load Combinations were ran:
- **Strength I**: 1.25(D) + 1.75(LL+IM case 1)
- **Service I**: (D) + (LL+IM case 1)
- **Strength II**: 1.25(D) + 1.75(LL+IM case 2)
- **Service II**: (D) + (LL+IM case 2)
- **ACI 318 LC1**: 1.4(D)

LL+IM Case 1 (21.28k Tire Area at GL-A and GL-D (midpoint))

LL+IM Case 2 (21.28k Tire Area at GL-C and GL-E (midpoint))
3 Analysis Results

3.1 Service Level Soil Pressures

Figure 1: Service I Soil Bearing Pressures (MAX = 2022.47 PSF)
Figure 2: Service II Soil Bearing Pressures (MAX = 917.53 PSF)
3.2 Deflection

Figure 3: Service I Deflection (MAX = -0.05618 in)
Figure 4: Service II Deflection (MAX=-0.025487")
4 Flexural Demands – Stress Distribution Maps

Figure 5: Strength I Flexural Demand (M11 Bending around global Y-Axis), (kip*ft/ft)
Figure 6: Strength I Flexural Demand (M22 Bending around global X-Axis), (kip*ft/ft)
Figure 7: Strength II Flexural Demand (M11 Bending around global Y-Axis), (kip*ft/ft)
Figure 8: Strength II Flexural Demand (M22 Bending around global X-Axis), (kip*ft/ft)
5 Shear Demand – Stress Distribution Maps

Figure 9: Strength I Shear Demand (V13 Shear plane parallel to global Y-Axis), (kip/ft)
Figure 10: Strength I Shear Demand (V23 Shear plane parallel to global X-Axis), (kip/ft)
Figure 11: Strength II Shear Demand (V13 Shear plane parallel to global Y-Axis), (kip/ft)
Figure 12: Strength II Shear Demand (V23 Shear plane parallel to global X-Axis), (kip/ft)
6 Design Strips – Flexure & Shear

Figure 13: Strength I Design Strip MOMENT along X-Axis (Max 0.8988 k*ft | Min -0.6801 k*ft)
Figure 14: Strength I Design Strip SHEAR along X-Axis (Max 0.771 k | Min -0.55 k)
Figure 15: Strength I Design Strip MOMENT along Y-Axis (Max 8.0001 k*ft | Min -0.7301 k*ft)
Figure 16: Strength I Design Strip SHEAR along Y-Axis (Max 6.11 k | Min -6.249 k)
Figure 17: Strength II Design Strip MOMENT along X-Axis (Max 0.9847 k*ft | Min -0.1462 k*ft)
Figure 18: Strength II 6 in Design Strip SHEAR along X-Axis (Max 0.445 k | Min -0.457 k)
Figure 19: Strength II Design Strip MOMENT along Y-Axis (Max 4.7568 k*ft | Min -0.1121 k*ft)
Figure 20: Strength II Design Strip SHEAR along Y-Axis (Max 2.857 k | Min -2.821 k)
Supporting Full Height Concrete Slab

Below each rumble strip mechanism there is a supporting concrete slab that spans the width of the box and extends the defined "h" depth below the mechanisms. The dimensions and criteria are defined here:

- $b := 12 \text{ in}$
 width of concrete beam section
- $h := 8 \text{ in}$
 height of concrete beam section
- $cvr := 2 \text{ in}$
 required clear cover
- $f_{y,\text{bar}} := 60 \text{ ksi}$
 concrete rein. steel yield strength (Gr. 60 reinforcement)
- $f'_{c} := 4500 \text{ psi}$
 concrete compressive strength
- $E_{s} := 29000 \text{ ksi}$
 modulus of Elasticity for Steel
- $\gamma_{\text{Concrete}} := 150 \text{ pcf}$
 unit Weight of Concrete

Choose a reinforcement size to check:

- $A_{s,\text{bar}} := 5$
 flexural reinforcement bar size
- $d_{\text{bar}}(A_{s,\text{bar}}) := 0.625 \text{ in}$
 bar diameter
- $A_{se}(A_{s,\text{bar}}) := 0.31 \text{ in}^2$
 bar area

The effective depth d_{e} is calculated as:

$$d_{e} := h - cvr - \frac{d_{\text{bar}}(A_{s,\text{bar}})}{2}$$

$$d_{e} = 5.69 \text{ in}$$
 effective depth

Flexural & Shear Demands:

These are the maximum factored moment (M_{p}) and shear (V_{p}) that the beam needs to carry found through a STAAD analysis:

- $M_{p} := 8.001 \text{ kip} \cdot \text{ft}$
 Flexural demand
 1.25DL+1.75(LLL+LM)
 see SAFE Output
 Figure 15
- $V_{p} := 6.249 \text{ kip}$
 Shear demand
 1.25DL+1.75(LLL+LM)
 see SAFE Output
 Figure 16

Flexural Design (Singly Reinforced Option):

The reinforcement chosen needs to provide a nominal flexural strength that exceeds the maximum factored moment (M_{p}) found through a STAAD analysis:

- $\phi_{0} := 0.90$
 strength reduction factor for tension controlled sections

Required coefficient for resistance for strength design:

$$R_{r, \text{reqd}} = \frac{M_{p}}{\phi_{0} \cdot b \cdot d_{e}^2} = 275 \text{ psi}$$

Stress ratio:

$$m := \frac{f_{y,\text{bar}}}{0.85 \cdot f'_{c}} = 15.69$$

Reference

preliminary design

Date: 02/23/2018
Job No: 181300731
By: I. BATILOV
Checked By: D. ROUNDS

Page 1 of 3
\[\rho_{\text{reqd}} = \frac{1}{m} \left(1 - \frac{1 - \frac{2 \cdot m \cdot R_{n,\text{reqd}}}{f_{y,\text{bar}}}}{1 - \frac{f_{c}}{f_{y,\text{bar}}}} \right) = 0.0048 \quad \text{required ratio for strength design} \]

\[\rho_{\text{min}} = \max \left(\frac{3 \sqrt{\frac{f_{c}}{f_{y,\text{bar}}}}}{200 \cdot \psi}, \frac{200}{f_{y,\text{bar}}} \psi \right) = 0.0034 \]

\[A_{s,\text{reqd}} = \max (\rho_{\text{reqd}}, \rho_{\text{min}}) \cdot b \cdot d_{o} \quad \text{required flexural reinforcement in tension} \]

\[A_{s,\text{reqd}} = 0.325 \text{ in}^2 \]

\# of \(A_{s,\text{bar}} \) = 3 \quad \text{number of bars to use for tensile reinforcement} \]

\[A_{s} = \# \text{of} \ A_{s,\text{bar}} \cdot A_{s,\text{reqd}} = 0.930 \text{ in}^2 \quad \text{provided steel reinforcement area} \]

\[\beta_{t} = \begin{cases} 0.85 & \text{if } f_{c} \leq 4000 \psi \\ \frac{f_{c}}{2000} & \text{if } f_{c} > 4000 \psi \\ \max \left(0.85 - 0.05 \left(\frac{f_{c} - 4000}{1000} \psi \right), 0.65 \right) & \end{cases} \]

\[\beta_{t} = 0.83 \quad \text{ratio of the depth of rectangular stress distribution to the depth of the neutral axis} \]

\[\rho_{\text{prov}} = \frac{A_{s}}{b \cdot d_{o}} = 0.0136 \]

\[\epsilon_{y} = \frac{f_{y,\text{bar}}}{E_{s}} = 0.0021 \quad \text{tension yielding strain limit for reinforcement steel} \]

\[\rho_{b} = \frac{0.85 \cdot f_{c}}{f_{y,\text{bar}}} \cdot \beta_{t} \cdot \left(\frac{0.003 \cdot E_{s}}{0.003 \cdot E_{s} + f_{y,\text{bar}}} \right) = 0.0311 \quad \text{balanced strain condition} \]

\[\rho_{\text{max}} = \frac{0.003 + \epsilon_{y} \cdot \rho_{b}}{0.007} = 0.0225 \quad \text{maximum reinforcement ratio at } \epsilon_{y} = 0.004 \text{ which is the lowest permitted steel strain at ult strength of flexural members} \]

\[\text{check} \rho_{\text{max}} = \begin{cases} \text{"OK"} & \text{if } \rho_{\text{max}} > \rho_{\text{prov}} \\ \text{"NOT OK"} & \text{else} \end{cases} \]

Check the design as follows:

\[T_b = A_s \cdot f_{y,\text{bar}} = 55.8 \text{ kip} \quad \text{Tensile capacity of reinforcement steel} \]

\[a_b = \frac{T_b}{0.85 \cdot f_{c} \cdot b} = 1.22 \text{ in} \quad \text{Whitney Equivalent rectangular block depth} \]

\[M_n = T_b \left(d_o - \frac{a_b}{2} \right) = 23.62 \text{ kip \cdot ft} \quad \text{nominal flexural strength} \]

\[x_b = \frac{a_b}{\beta_t} = 1.47 \text{ in} \quad \text{the neutral axis is located } x_b \text{ from the point of maximum compression} \]
\[\varepsilon_i = \left(\frac{d_s - x_o}{x_o} \right) \cdot 0.003 = 0.0086 \]

net strain in the tension steel

\[
\text{check } \varepsilon_i = \begin{cases}
\text{if } \varepsilon_i \leq 0.002 & \phi_{b, \text{adj}} = 0.02 \\
\text{if } 0.02 < \varepsilon_i < 0.005 & \phi_{b, \text{adj}} = 0.65 \\
\text{if } \varepsilon_i \geq 0.005 & \phi_{b, \text{adj}} = 0.65 + (\varepsilon_i - 0.002) \cdot \frac{250}{3} \\
\end{cases}
\]

\[\phi_{b, \text{adj}} = 0.90 \]

\[\phi M_n = \phi_{b, \text{adj}} \cdot M_n = 21.26 \text{ kip ft} \]

\[\phi M_n = 21.26 \text{ kip ft} \]

Shear Capacity Check:
The concrete section nominal shear strength will be checked if it exceeds or exceeds the maximum factored shear \(V_c \) found through the SAFE analysis:

\[\phi_{V_c} = 0.75 \]

\[\Lambda_{\text{conc}} = 1.0 \]

\[V_c = 2 \cdot \Lambda_{\text{conc}} \cdot \sqrt{f_{c'} \cdot b \cdot d_s \cdot \text{lbf}} = 9.16 \text{ kip} \]

for members subject to shear and flexure only

\[\phi V_c = \phi_{V_c} \cdot V_c = 6.868 \text{ kip} \]

\[\text{check } \phi V_c = \begin{cases}
\text{if } \phi V_c > V_u & V_u = 6.25 \text{ kip} \\
\text{else} & \text{"OK"} \\
\end{cases}
\]

\[\text{check } \phi V_c = \text{"OK"} \]
Full Height Concrete Beam

In between each rumble strip mechanism there is 7" solid concrete that spans the length of the box and extends the full depth of the box. The dimensions and criteria are defined here:

- **b** = 7 in
 width of concrete beam section
- **h** = 17 in
 height of concrete beam section (8" slab + 9" stem wall)
- **cvr** = 2 in
 required clear cover
- **f_y, bar** = 60 ksi
 concrete reinf. steel yield strength (Gr. 60 reinforcement)
- **f_c'** = 4500 psi
 concrete compressive strength
- **E_s** = 29000 ksi
 modulus of Elasticity for Steel
- **Y_{concrete}** = 150pcf
 unit weight of concrete

Choose a reinforcement size to check:

- **Ties_{bar}** = 5
 Size of Ties or Perp Bars if present and affects effective depth (**d_e**)
- **A_{bar} = 6**
 define flexural reinforcement bar size

 \[d_{bar} (A_{bar}) = 0.75 \text{ in} \]
 bar diameter
 \[A_{se} (A_{bar}) = 0.44 \text{ in}^2 \]
 bar area

\[d_e = h - cvr - d_{bar} (Ties_{bar}) - \frac{d_{bar} (A_{bar})}{2} \]

d_e = 14 in
effective depth

Flexural & Shear Demands:

These are the maximum factored moment (**M_{u}**) and shear (**V_{u}**) that the beam needs to carry found through a STAAD analysis:

M_{u} = 1.9694 kip·ft
Flexural demand
1.25DL+1.75(LLL+IM)
see SAFE Output
Figure 17

V_{u} = 1.542 kip
Shear demand
1.25DL+1.75(LLL+IM)
see SAFE Output
Figure 14

Flexural Design (Singly Reinforced Option):

The reinforcement chosen needs to provide a nominal flexural strength that exceeds the maximum factored moment (**M_{u}**) found through a STAAD analysis:

\[\phi_{0} = 0.90 \]
strength reduction factor for tension controlled sections

\[R_{r, reqd} = \frac{M_{u}}{\phi_{0} \cdot b \cdot d_{e}^{2}} = 19 \text{ psi} \]
required coefficient for resistance for strength design

\[m = \frac{f_{y, bar}}{0.85 \cdot f_{c}'} = 15.69 \]
stress ratio
\[\rho_{reqd} = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2 \cdot m \cdot R_{n,reqd}}{f_{y,bar}}} \right) = 0.0003 \] required ratio for strength design

\[\rho_{min} = \max \left(3 \cdot \sqrt{\frac{f'_{c}}{psl}}, \frac{200}{f_{y,bar}} \right) = 0.0034 \] required minimum ratio for flexural design

\[A_{s,reqd} = \max (\rho_{reqd}, \rho_{min}) \cdot b \cdot d_{o} \] required flexural reinforcement in tension

\[\# of A_{s,bar} = 1 \] number of bars to use for tensile reinforcement

\[A_{s} = \# of A_{s,bar} \cdot A_{se} (A_{s,bar}) = 0.440 \text{ in}^2 \] provided steel reinforcement area

\[\beta_{s} = \frac{A_{s}}{b \cdot d_{o}} = 0.0045 \] ratio of the depth of rectangular stress distribution to the depth of the neutral axis

\[\epsilon_{y} = \frac{f_{y,bar}}{E_{s}} = 0.0021 \] tension yielding strain limit for reinforcement steel

\[\rho_{b} = \frac{0.85 \cdot f'_{c}}{f_{y,bar} \cdot (0.003 \cdot E_{s} + f_{y,bar})} = 0.0311 \] balanced strain condition

\[\rho_{max} = \frac{0.003 + \epsilon_{y} \cdot \rho_{b}}{0.007} = 0.0225 \] maximum reinforcement ratio at \(\epsilon_{y} = 0.004 \) which is the lowest permitted steel strain at ultimate strength of flexural members

Check: \(\rho_{max} = "OK" \)

Check the design as follows:

\[T_{b} = A_{s} \cdot f_{y,bar} = 26.4 \text{ kip} \] Tensile capacity of reinforcement steel

\[a_{b} = \frac{T_{b}}{0.85 \cdot f'_{c} \cdot b} = 0.99 \text{ in} \] Whitney Equivalent rectangular block depth

\[M_{n} = T_{b} \left(d_{o} - \frac{a_{b}}{2} \right) = 29.72 \text{ kip \cdot ft} \] nominal flexural strength

\[x_{b} = \frac{a_{b}}{\beta_{s}} = 1.2 \text{ in} \] the neutral axis is located \(x_{b} \) from the point of maximum compression
\[\varepsilon_t = \left(\frac{d_s - x_b}{x_b} \right) \cdot 0.003 = 0.0321 \]

net strain in the tension steel

\[\text{check } \varepsilon_t = \begin{cases} \text{"Compression Controlled"} & \text{if } \varepsilon_t \leq 0.002 \\ \text{"Transition Range"} & \text{if } 0.002 < \varepsilon_t < 0.005 \\ \text{"Tension Controlled"} & \text{if } \varepsilon_t \geq 0.005 \end{cases} \]

\[\varphi_{b,\text{adj}} = \begin{cases} 0.65 & \text{if } \varepsilon_t \leq 0.002 \\ 0.65 + \left(\varepsilon_t - 0.002 \right) \cdot \left(\frac{250}{3} \right) & \text{if } 0.002 < \varepsilon_t < 0.005 \\ 0.90 & \text{if } \varepsilon_t \geq 0.005 \end{cases} \]

\[\phi M_n = \varphi_{b,\text{adj}} \cdot M_n = 26.74 \text{ kip} \cdot \text{ft} \]

\[\phi M_n = 26.74 \text{ kip} \cdot \text{ft} \]

\[\text{check } \phi M_n = \begin{cases} \text{"OK"} & \text{if } \phi M_n > M_{u} \\ \text{"NOT OK"} & \text{else} \end{cases} \]

\[M_{u} = 1.97 \text{ kip} \cdot \text{ft} \]

Flexural Design (Doubly Reinforced Beam Option):
The reinforcement chosen needs to provide a nominal flexural strength that exceeds the maximum factored moment \(M_p\) found through a STAAD analysis. The capacity of a doubly reinforced beam is the superposition of (1) a singly reinforced beam with an area of steel \(A_{s1}\), and (2) an tension-compression steel section, with \(A'_{s}\) as compression reinforcement and \(A_{s2}\) as tensile reinforcement.

Choose a compression side reinforcement size to check:

\[A_{s,\text{bar}} = 6 \]

Tension side steel reinforcement bar size

(matches single side beam reinforcement design)

\[A'_{s,\text{bar}} = 4 \]

Compression side steel reinforcement bar size

\[d_{\text{bar}}(A'_{s,\text{bar}}) = 0.5 \text{ in} \]

\[d_{\text{bar}}(A_{s,\text{bar}}) = 0.75 \text{ in} \]

bar diameter

\[A_{se}(A'_{s,\text{bar}}) = 0.20 \text{ in}^2 \]

\[A_{se}(A_{s,\text{bar}}) = 0.44 \text{ in}^2 \]

bar area

\[\text{#of } A'_{s,\text{bar}} = 1 \]

number of bars to use for compression reinforcement

\[\text{#of } A_{s,\text{bar}} = 1 \]

number of bars to used as tensile reinforcement
\[A'_{s} = \# \text{of} A_{s, \text{bar}} \cdot A_\text{se} \left(A'_{s, \text{bar}} \right) = 0.200 \text{ in}^2 \] provided compression steel reinforcement area

\[A_s = 0.44 \text{ in}^2 \] total area of tension steel

With the use of compression reinforcement there is the need for lateral bracing provided by closed ties/stirrups. Per ACI 318 7.11.1 and 7.10.5, the following ties and spacing will need to be provided for the size of compression bars selected:

\[A_{s, \text{req}} = \begin{cases} 3 & \text{if } A'_{s, \text{bar}} \leq 10 \\ 4 & \text{if } A'_{s, \text{bar}} > 10 \end{cases} \]

\[d_{\text{bar}} (A_{s, \text{tie}}) = 0.375 \text{ in} \]

\[A_{\text{se}} (A_{s, \text{tie}}) = 0.11 \text{ in}^2 \]

The required spacing of these ties needs to be the smallest of the following quantities set by ACI 318-11 7.10.5.2

\[\min \left(16 \cdot d_{\text{bar}} (A'_{s, \text{bar}}), 48 \cdot d_{\text{bar}} (A_{s, \text{tie}}), b \right) = 7 \text{ in} \]

\[S_{\text{tie}} = \text{Floor} \left(\min \left(16 \cdot d_{\text{bar}} (A'_{s, \text{bar}}), 48 \cdot d_{\text{bar}} (A_{s, \text{tie}}), b \right), 1 \text{ in} \right) = 7 \text{ in} \]

\[d' = cv + d_{\text{bar}} (A_{s, \text{tie}}) + \frac{d_{\text{bar}} (A'_{s, \text{bar}})}{2} = 2.63 \text{ in} \] distance from center of compression steel to the compression edge of the beam

Step 1: Let us assumed that the compression steel has yielded \((\epsilon_s \geq \epsilon_y) \) before the concrete in compression has reached its ultimate strain. Therefore \((f_y = f_{y, \text{bar}}) \)

\[\epsilon_y = 0.0021 \] yielding strain of reinforcement steel \((f_y/E) \)

\[A_{s2} = A'_{s} = 0.2 \text{ in}^2 \] area of tension steel required to work with the area of compression steel

\[A_{s1} = A_s - A_{s2} = 0.24 \text{ in}^2 \] area of tension steel for concrete-steel force couple

Step 2: Calculate the depth of the compression zone and location of neutral axis:

\[a = \frac{A_{s1} \cdot f_{y, \text{bar}}}{0.85 \cdot f_c \cdot b} = 0.54 \text{ in} \]

\[c = \frac{a}{b} = 0.65 \text{ in} \]
Step 3: Determine the strain levels of the tensile steel (ε_t) and the compression steel (ε_c') from the similarity of triangles (see figure above):

\[
d_t = \frac{h - cv - d_{bar}}{A_{sek}} - \frac{d_{bar}(A_{sek})}{2} = 14.25 \text{ in}
\]

\[
\varepsilon_t = \frac{0.003 \cdot (d_t - c)}{c} = 0.0626
\]

\[
\varepsilon_y = 0.0021
\]

ε_t:
- if $\varepsilon_t \leq \varepsilon_y$, "Compression Controlled"
- if $\varepsilon_y < \varepsilon_t < 0.005$, "Transition Range"
- if $\varepsilon_t \geq 0.005$, "Tension Controlled"

$\phi_{b,adj} = 0.90$

Step 4: Determine the strain levels of the compression steel (ε_c') from the similarity of triangles (see figure above) to see if the steel yields when the strain in the concrete reaches 0.003:

\[
\varepsilon_c' = \frac{0.003 \cdot (c - d')}{c} = -0.0091
\]

$\varepsilon_y = 0.0021$

ε_c':
- if $\varepsilon_c' \geq \varepsilon_y$, "Case 1" Case 1: Compression reinforcement yields
- if $\varepsilon_c' < \varepsilon_y$, "Case 2" Case 2: Compression reinforcement does not yield

$\varepsilon_c' = \text{"Case 2"}$
Step 5: CASE 2

Because \(\varepsilon_c < \varepsilon_y \), the compression steel did not yield when the strain at the extreme compression edge on the concrete edge reached 0.003. The stress in the compression steel \(f_s \) can be calculated as:

\[
f_s = \varepsilon_c \cdot E_s = -263324 \text{ psi}
\]

The assumption made in step 1 was not correct. The force provided by the compression steel is less than was assumed. Hence a smaller portion of tensile steel will work in the compression steel - tension steel couple, and a new location has been determined for the Neutral Axis. Find it solving the following equation based on the equilibrium of the total section tension and compression forces:

\[c_{c2} := \frac{h}{2}, \quad h = 17 \text{ in} \quad \text{this is the guess value for the solver}\]

\[(0.65 \cdot f_y \cdot b \cdot \beta_2) \cdot c_{c2}^2 + (0.003 \cdot E_s \cdot A_y - A_b \cdot f_{y,ow}) \cdot c_{c2} - 0.003 \cdot d' \cdot E_s \cdot A' = 0\]

\[\text{find } (c_{c2}) = 1.656 \text{ in}\]

\[c_{c2} := 1.656 \text{ in} \quad \text{actual location of neutral axis (copy value from solver)}\]

Step 6 & 6a: Once the updated distance to the neutral axis is known, determine the net tensile strain in the extreme layer of steel \(\varepsilon_{t,c2} \)

\[
\varepsilon_{t,c2} = \frac{0.003 \cdot (d_t - c_{c2})}{c_{c2}} = 0.0228 \quad \varepsilon_y = 0.0021
\]

check: \(\varepsilon_{t,c2} = \text{"Tension Controlled"} \)

\[
\phi_{b,c2} := \begin{cases}
0.65 & \text{if } \varepsilon_{t,c2} \leq \varepsilon_y \\
0.65 \cdot (\varepsilon_{t,c2} - 0.002) \cdot \left(\frac{250}{3}\right) & \text{if } \varepsilon_y < \varepsilon_{t,c2} < 0.005 \\
0.90 & \text{if } \varepsilon_{t,c2} \geq 0.005
\end{cases}
\]

check: \(\varepsilon_{t,c2} = \text{"Tension Controlled"} \)

\[\phi_{b,c2} = 0.90\]

Step 7: Calculate the stress in the compression steel \(f_{s,c2} \):

\[
f_{s,c2} = \frac{0.003 \cdot (c_{c2} - d')}{c_{c2}} \cdot E_s = -50.91 \text{ ksi}
\]

then calculate the depth of the equivalent stress block \(d_{case2} \)

\[d_{case2} = \beta_1 \cdot c_{c2} = 1.37 \text{ in}\]
Step 8: Calculate \(M_{n1,\text{case}2} \) and \(M_{n2,\text{case}2} \), the nominal resisting moments of the concrete-tensile steel couple and the compression steel-tensile steel couple, respectively:

\[
M_{n1,\text{case}2} = (0.85 \cdot f_c \cdot b \cdot a_{\text{case}2}) \cdot \left(d_t - \frac{a_{\text{case}2}}{2} \right) \]

\[M_{n1,\text{case}2} = 41.36 \text{ kip \cdot ft} \quad \text{concrete-tensile steel couple nominal resisting moment} \]

\[
M_{n2,\text{case}2} = A_s' \cdot f_{s,\text{case}2} \cdot (d_t - d') \]

\[M_{n2,\text{case}2} = -9.86 \text{ kip \cdot ft} \quad \text{compression steel-tensile steel couple nominal resisting moment} \]

The total nominal resisting moment is:

\[
\phi M_{n,\text{case}2} = \phi_{b,\text{case}2} \cdot (M_{n1,\text{case}2} + M_{n2,\text{case}2}) = 28.34 \text{ kip \cdot ft} \quad \text{\(M_u = 1.97 \text{ kip \cdot ft} \)}
\]

\[\text{check } \phi M_{n,\text{case}2} = \begin{cases} \text{"OK"} & \text{if } \phi M_{n,\text{case}2} > M_u \\ \text{"NOT OK"} & \text{else} \end{cases} \]

Shear Capacity Check:
The concrete section nominal shear strength will be checked if it exceeds the maximum factored shear \((V_u) \) found through the SAFE analysis:

\[\phi_{V_c} = 0.75 \quad \text{ACI 318-11 9.3.2.3} \]

\[\lambda_{\text{cove}} = 1.0 \quad \text{ACI 318-11 9.6.1} \]

\[
V_c = 2 \cdot \lambda_{\text{cont}} \cdot \sqrt{\frac{f_c}{\text{psi}}} \cdot b \cdot d_t \quad \text{lbft} = 13.38 \text{ kip} \quad \text{for members subject to shear and flexure only} \]

\[\phi V_c = \phi_v \cdot V_c = 10.04 \text{ kip} \quad \text{check } \phi V_c = \begin{cases} \text{"OK"} & \text{if } \phi V_c > V_u \\ \text{"NOT OK"} & \text{else} \end{cases} \]

\[V_u = 1.54 \text{ kip} \]

\[
V_s = 2 \cdot A_s (A_s) \cdot f_{y,\text{bar}} \cdot d_t \quad S_{\text{ties}} = 26.87 \text{ kip} \quad \text{Shear capacity of ties used as shear reinforcement} \]

\[\phi V_s = \phi_v \cdot (V_c + V_s) = 30.19 \text{ kip} \quad \text{check } \phi V_s = \begin{cases} \text{"OK, but shear reinf req'd"} & \text{if } \phi V_s > V_u \\ \text{"NOT OK"} & \text{else} \end{cases} \]

\[\text{Page 7 of 7} \]
(a) Doubly-reinforced beam = singly-reinforced beam + tension-compression steel

\[\varepsilon_s = 0.003 \]

(b) Strain distribution in doubly-reinforced beam

(c) Concrete-steel couple

\[C_1 = 0.85 f'_c ba \]

\[z_1 = d - \frac{a}{2} \]

\[T_1 = A_{s1} f_y \]

(d) Steel-steel couple

\[C_2 = A'_s f'_s \]

\[z_2 = d - d' \]

\[T_2 = A_{s2} f_y \]

FIGURE 3-16 Analysis of doubly-reinforced beams.
FIGURE 3-17 Analysis of doubly-reinforced beams.
SECTION 300
STEM WALL
Design Vertical Leg of Concrete Box for Shear and Flexure

Induced As Breaking Force (FR) calculated on panel Z.

For FR = 140 kN, applied over the width of the contact area of 20".

The vertical leg is framed with 1/8" R.

so that will be considered as reinforcement.

For 1.25 DC + 1.75 (LL + FR) + 1.75 (BR)

Axial Deration (for 2.0" Strip)

\[DL = \frac{(7\text{"})}{(12/\text{ft})} \times \frac{(20\text{"})}{(12/\text{ft})} \times 150 \text{psi} \]

= 103.4 kN

LL + FR = 1.25(16\text{k}) = 21.25 kN

\[P_a = 1.25(0.105\text{k}) + 1.75(21.25\text{k}) \]

= 37.4 kN

Lateral Direction

BR = 4 kN

\[R_u = 1.75(400\text{K}) = 700 \text{K} \]

\[M_u = R_u(3\text{\prime\prime}) = (700\text{K})(3\text{\prime\prime}) = 63 \text{ k}\cdot\text{m} \]

Check Concrete shear Capacity

Per ACI 318-11 11.2.1.1, for sections of significant axial compression in addition to flexure & shear,

\[V_u = 2 \left(1 + \frac{N_u}{200 A_g} \right) \sqrt{\frac{f_c}{f_y}} b_d \]

\[N_u = \text{Axial Compression} = P_a = 37.4 \text{k} = 37400 \text{kN} \]

\[b_d = 20" \] (Equivalent to the contact width)

\[d = \text{distance } V_u \text{ of section } \frac{m}{l} \text{, maximum } = 7/2 = 3.5" \]

\[\phi = 0.75 \text{ (ACI 318.9.3.2.3)} \]

\[f_c = 4500 \text{ psi (Concrete compressive strength)} \]

\[A_g = \text{gross cross-sectional area} = b_w(7" - (20\text{")})(7") = 140 \text{ in}^2 \]

\[\phi V_u = (374) \left(1 + \frac{37400 \text{kN}}{200(4500 \text{psi})} \right) \sqrt{4500 \text{psi}(20\text{")}(7")} = 16452 \text{ kN} \]

\[16.452 > R_u = 7 \text{ kN/m} \]
THE LATERAL LOAD WILL BE EQUATED TO AN ECCENTRIC AXIAL LOAD INDUCING THE SAME FLEXURAL DEFORMATIONS, \(M_a \).

\[
E = \frac{M_a}{P_a} = \frac{623.0 \text{ in}}{37.4 \text{ k}} = \frac{168.9 \text{ in}}{37.4 \text{ k}}
\]

THE LOAD CAPACITY OF A TIED COLUMN UNDER A COMBINED LOAD IS:

\[
\phi P_a = 0.8 \left[0.85 \phi_c (A_{st} - A_{ct}) + \frac{1}{2} A_{ct} \right]
\]

\[
\phi P_a = 0.8(0.65)[0.85(3.8 \text{ ksi})(140 \text{ in}^2 - 5 \text{ in}^2) + (5 \text{ in}^2)(5 \text{ in}^2)]
\]

\[
= 0.8(0.65)[516.3 \frac{\text{kip}}{\text{in}} + 180 \frac{\text{kip}}{\text{in}}]
\]

\[
= 362.1 \frac{\text{kip}}{\text{in}} P_a, \quad 0.65
\]

THE NOMINAL AXIAL LOAD STRESSES, \(P_a \), AND NOMINAL FLEXURAL STRESS, \(M_a \), FOR THE SHORT COLUMN WILL BE FOUND, CONSIDERING THE \(P_a \) LOAD IS APPLIED AT AN \(E = 168.9 \text{ in} \).

THE STRESS AND STRAIN IN THE STEEL ARE PROPORTIONAL TO THE YIELD POINT. LET'S ASSUME TENSILE STEEL (\(A_s \)) IS NOT REACHED YIELD (\(E_s, E_o \)).

WHEN CONCRETE REACHES COMpressive STRAIN OF 0.003:

YIELD STRAIN (\(E_{st} \)) FOR \(0.36 \text{ ksi} = \frac{E_{st}}{E_{so}} = 360 \text{ ksi} / 29,000 \text{ ksi} = 0.00124 \) AND BECAUSE COMPRESSION STEEL (\(A_{ct} \)) IS close to COMPRESSION EDGE, WE CAN ASSUME STRAIN IN COMPRESSION STEEL IS MORE THAN YIELD (\(E_{c} < E_{st} \)).

\[
E_s < E_{c} \quad \Rightarrow \quad \frac{E_s}{E_{so}} < \frac{E_c}{E_{ct}} \quad \Rightarrow \quad \frac{E_s}{E_{so}} < \frac{E_c}{E_{ct}}
\]

THE STRAINS IN THE TENSION AND COMPRESSION STEEL DEPEND ON THEIR LOCATION TO THE NEUTRAL AXIS, \(C \), FROM SIMILARITY OF TRIANGLES:

\[
\frac{E_s}{0.003} = \frac{d - c}{c} \quad \Rightarrow \quad E_s = 0.003 \left(\frac{d - c}{c} \right)
\]

THE STRESS IN THE TENSILE STEEL IS:

\[
\phi = E_s E_o = (29,000 \text{ ksi})(0.003) \left(\frac{d - c}{c} \right) = 87 \left(\frac{d - c}{c} \right)
\]

\[
d = 7" - 0.05 \left(\frac{1"}{8} \right) = 6.9375 "
\]
The compression and tensile forces acting on the section are:

Compression Forces:
- \(C_1 = 0.85 \times \frac{3.4375'' \times 0.35}{12} \times 20'' = 65.03 \, k \)
- \(C_2 = A_T \left(\frac{d}{2} - 0.35 \right) = \left(\frac{10''}{2} \right) \times 0.35 = 80.44 \, k \)

Tensile Force, \(T \):
- \(T = P_r \times A_T \), substituting \(P_r \) with \(\frac{27}{c} \times \frac{d-c}{c} \)
- \(T = 87 \left(\frac{6.3375'' - c}{c} \right) \times \left(1.5 \, m^2 \right) \)
- \(T = 217.5 \left(\frac{6.3375'' - c}{c} \right) \, k \)

Equilibrium Requires That the Sum of Forces Be Equal to Zero:
- \(P_r - C_1 - C_2 + T = 0 \)
- \(P_r = C_1 + C_2 - T \)
- \(P_r = 65.03 \, k + 80.44 \, k - 217.5 \left(\frac{6.3375'' - c}{c} \right) \times 10^{-6} \)

In addition, sum of moments needs to equal zero. Taking the moment about the location of tensile steel \(A_T \) for simplicity:
- \(P_r \left(3.4375'' \times 1.6875'' \right) - C_1 \left(\frac{d}{2} - \frac{c}{2} \right) - C_2 \left(6.375'' \right) = 0 \)
- \(P_r \left(5.125'' \right) - C_1 \left(6.3375'' - \frac{0.85c}{2} \right) + C_2 \left(6.375'' \right) \)
- \(P_r = \left(\frac{1}{5.125''} \right) \left[65.03 \, k \left(\frac{6.3375'' - 0.85c}{2} \right) + 80.44 \, k \left(6.375'' \right) \right] \)
- \(P_r = \left(\frac{1}{5.125''} \right) \left[451.146 \, k \ - 27.638 \, c^2 + 553.025 \, k \, m \right] \)
- \(P_r = -5.3365 \, c^2 + 88.03 \, c + 107.9 \, k \)

Equating the two expressions of \(P_r: \)
- \(65.03 \, k + 80.44 \, k - 217.5 \left(\frac{6.3375'' - c}{c} \right) = -5.3365 \, c^2 + 88.03 \, c + 107.9 \, k \)
- \(-1508.91 + 217.5 = -5.3365 \, c^2 + 23.06 \, c + 27.541'' \)
- \(-1508.91 = -5.3365 \, c^3 + 23.06 \, c^2 - 183.9 \, c \)

Solving for \(c \), using MATLAB solver,
- \(c = 6.07 \, in \)
Substituting C in one of the P_n equations:

\[P_n = -5.3365(6.07)^2 + 88.05(6.07) + 107.98^k \]
\[= 442.85^k \]

Knowing C and P_n, must check assumptions. Calculating strain in compression steel (E_s) via similarity of triangles

\[\frac{E_s}{0.003} = \frac{C}{C} \rightarrow E_s = 0.003 \left(\frac{6.07 - 0.0625}{6.07} \right) \]
\[E_s = 0.00237 > E_y \left(\frac{1}{\sqrt{2}} \right) = 0.00124 \]

Strain in compression steel is more than the yield strain; therefore strains in compression steel are yielded.

Now to find level of strain in the tensile steel:

\[E_s = 0.003 \left(\frac{d - C}{C} \right) = 0.003 \left(\frac{6.3376 - 6.07}{6.07} \right) \]
\[E_s = 0.00043 < E_y = 0.00124 \]

Hence second assumption that tensile steel (A_s) has not yielded was correct. The nominal moment capacity @ this eccentricity of load is:

\[M_n = P_n \frac{e}{C} = \left(442.85^k \right) \left(1.69^k \right) \]
\[= 747.44^k \text{ ft-lb} \]

As noted earlier, for compression controlled sections w/ no spiral reinforcement, $\phi P_n = 0.65$

\[\phi P_n = (0.65)(442.85^k) = 288.5^k > P_n = 37.4^k \quad \text{OK!} \]

\[\phi M_n = (0.65)(747.44^k \text{ ft-lb}) = 485.8^k \text{ ft-lb} > M_n = 63^k \text{ ft-lb} \quad \text{OK!} \]
CHECK THAT FILLER WELD FOR 1/16" PL CAN TRANSFER TENSILE FORCE

\[T = 217.5 \left(\frac{0.3075 - 0.07}{0.07} \right) = 31.1 \text{ k} \text{ DEMAND ON WELD} \]

TRY 1/8" FILLER WELDS:

\[\phi R_n = \frac{1.382 D L}{D} = 2 \text{ (FOR 2 SIDE GROOVES)} \]

\[= 1.382 \left(\frac{2}{10} \right) = 55.68 \text{ k} \]

\[\frac{1}{8}" \text{ FILLER } \phi R_n = 55.68 \text{ k} > T = 31.1 \text{ k} \text{ OK!} \]

CHECK (6") STEM WALL FOR SHEAR AT ENDS

LONGITUDINAL BOX ENDS STEM WALLS ARE 6" WIDE - THEY ARE CHECKED FOR SHEAR PER ACI 318-11, 11.2.1.1 ACI 318-11 11.2.1.1 Eq. (11-11)

\[V_o = 2 \left(1 + \frac{N_u}{200 A_g} \right) \sqrt{V_u} b \text{ w d} \]

\[N_u = \text{ Axial COMPRESSION, } P_u = 37400 \text{ Lb} \]

\[b_{w} = 20" \text{ (TIRE CONTACT AREA WIDHT)} \]

\[A_g = \frac{\text{GROSS CROSS-SECTIONAL AREA,}}{6" \times 20"} = 120 \text{ in}^2 \]

\[\phi V_o = (0.75) \left(2 \left(1 + \frac{37400 \text{ Lb}}{200 \times 120 \text{ in}^2} \right) = 9500 \text{ psi} \left(20" \times 3" \right) \right) \]

\[= 15,400 \text{ ft} = 15.4 \text{ k} > R_v = 7 \text{ k} \text{ OK!} \]

5 squares per inch
THE 6" WIDE STEM WALLS ON THE OUTER EDGES OF THE BOX NEED TO BE CHECKED FOR axial/pleasure DEMANDS OF THE TRAFFIC LIVE LOAD CONSIDERING BRAKING FORCE.

6" STEM WALL IS FRAMED WITH 1/8" PL AND #5 BAR CENTERED IN SECTION (SEE FIGURE)

Axial Load, \(P_a \) (FOR 20° TIRE AREA)

\[
DL = \frac{7''}{12''} \left(\frac{9''}{18''} \right) \left(\frac{150{bf}}{12''} \right) = 103.4\, k\, \text{lbs}
\]

\(LL + IM = 1.35 (10\, k) = 21.28\, k\)

\[
P_a = 1.25 (103.4\, k) + 1.75 (21.28\, k) = 73.4\, k
\]

Lateral Direction, \(R_u \) (FOR 20° TIRE AREA)

Minimum Force, \(BR = 9\, k \) (SEE SECTION 100)

\[
R_u = 1.75 (9\, k) = 7\, k
\]

\[
M_u = R_u (7'') (8'') = 63\, \text{k-ft}
\]

Lateral load equivalent to an Eccentric Axial load induces the same horizontal demand, \(M_0 \)

\[
e = \frac{M_0}{P_a} = \frac{63\, \text{k-ft}}{73.4\, \text{k}} = 1.624\, \text{in}
\]

Tension Steel, \(A_s \)

\[
A_s = \left(\frac{20''}{9/\text{arc}} \right) (0.31\, \text{in}^2) = 155\, \text{in}^2
\]

d = \frac{7''}{2} = 3.5'' since BAR IS CENTERED
IDEALIZING A 10' SEGMENT OF THE 6' STEM WALL AS A TIED COLUMN UNDER A CONCENTRATED LOAD:

\[P_r = 0.8 \left[0.85 \left(A_s \cdot f_{y} \right) + \frac{1}{6} A_t \cdot f_{y} \right] \]

\[A_s = 20'' \times 7'' = 140 \text{ in}^2 \]

\[f_{y} = 60,000 \text{ psi} \]

\[A_t = \text{AREA OF STEEL} \]

\[= 0.8 \left(0.65 \right) \left(0.85 \right) \left(140 \right) + \left(30 \times 0.35 \right) \left(4.5 \times 0.3 \right) \]

\[= 0.8 \left(0.65 \right) \left[520.01 k + 145.8 \right] \]

\[= \left(\frac{3}{4} \times 20'' \right) + \left(20'' \times \frac{0.31}{60} \right) \]

\[P_r = 346.2 \text{ k} \geq P_o = 374 \text{ k} \text{ OK} \]

THE NOMINAL AXIAL LOAD \(P_o \) AND MINIMUM \(M_o \) FOR A SHORT COLUMN CONSIDERING THE \(P_o \) LOAD IS APPLIED AT AN ECCENTRICITY \(e \) OF 1.084 in.

THE STRESS AND STRAIN IN THE STEEL ARE PROPORTIONAL TO THE YIELD POINT. ASSUMING TANGENT STEEL \((A_t) \) HAS NOT REACHED YIELD STRESSES \((e_y, e_t) \) AT THE TIME CONCRETE REACHES COMpressive STRAIN of 0.003, AND THAT YIELD STRESS FOR CR 60 RENE is:

\[\frac{f_y}{f_{y}} = \frac{20,000}{4500} = 0.0021 \]

AND BECAUSE COMPRESSION STEEL \((A_s) \) AT COMPRESSION EDGE, WE CAN ASSUME STRAIN IN COMPRESSION STEEL IS MORE THAN \(e_y \) (YIELD)

\[e_y < e_0 \rightarrow \frac{e}{e_y} \]

\[e_0 > e_y \rightarrow \frac{e}{e_0} \]

STRAIN IN THE TENSION / COMPRESSION STEEL DEPEND ON THEIR LOCATION TO NEUTRAL AXIS \(c \), SO FROM SIMILARITY OF \(\Delta c \)

\[\frac{e_t}{0.003} = \frac{d-c}{c} \rightarrow e_t = 0.003 \left(\frac{d-c}{c} \right) \]

STRESS IN TANGENT STEEL IS:

\[f_t = E_s \cdot e_t = \left(29,000 \text{ ksi} \right) \left(0.003 \left(\frac{d-c}{c} \right) \right) = 87 \left(\frac{d-c}{c} \right) \]

COMPRESSION / TENSION FORCES ACTING ON SECTION ARE:

CONCRETE:

\[C_1 = 0.85 \left(a_c \cdot b \right) = 0.85 \left(4.5 \times 0.35 \right) \left(20'' \right) = 65.06 \text{ k} \]

COMPO. STEEL:

\[C_2 = A_s \left(\frac{f_y - 0.85 f_{y}}{12} \right) = \left(\frac{1}{6} \times 20'' \left(30 \times 0.35 \right) - 0.85 \left(4.5 \times 0.3 \right) \right) \]

\[= 80.44 \text{ k} \]
TENETILE FORCE:

\[T = \frac{A_2}{E_2} \text{, substituting } I_2 = \frac{\pi}{4} \left(\frac{d-c}{c} \right)^4 \]

\[T = \frac{87(3.5'' - c)}{c} (1.55 \text{ in}^2) = 134.85 \left(\frac{3.5'' - c}{c} \right) \text{ kips} \]

SUM OF THE FORCES MUST EQUAL 0,

\[P_n - C_1 - C_2 + T = 0 \quad \Rightarrow \quad P_n = C_1 + C_2 - T \]

\[P_n = 65.03 \text{ k} + 80.44 \text{ k} - 134.85 \left(\frac{3.5'' - c}{c} \right) = 0 \]

ADDITIONALLY, SUM OF MOMENTS NEED TO EQUAL ZERO, TAKING MOMENT ABOUT THE LOCATION OF THE TENSION STEEL (A_2)

\[P_n \left(1.684'' \right) = C_1 \left(\frac{d-a}{2} \right) - C_2 \left(3.5'' - 0.5\left(\frac{d}{2} \right) \right) = 0 \]

\[1.684'' \cdot P_n = 65.03 \text{ k} \left(\frac{3.5 - 0.85}{2} \right) + 80.44 \left(\frac{3.4375}{3.4375} \right) \]

\[P_n = \left(\frac{1}{1.684''} \right) \left[22761 \text{ in} - 276.49 \text{ in}^2 + 276.51 \text{ in}^2 \right] \]

\[P_n = -16.41 \text{ k}^2 + 135.16 \text{ k} + 164.26 \text{ k} \]

EQUATING THE TWO EXPRESSIONS (1); (2)

\[65.03 \text{ k} + 80.44 \text{ k} - 134.85 \left(\frac{3.5'' - c}{c} \right) = -16.41 \text{ k}^2 + 135.16 \text{ k} + 164.26 \text{ k} \]

\[-471.32 \text{ k} + 134.85 \left(\frac{3.5'' - c}{c} \right) = -16.41 \text{ k}^2 + 70.13 \text{ k} + 83.76 \text{ k} \]

\[-471.32 = -16.41 \text{ k}^2 + 70.13 \text{ k}^2 - 51.09 \text{ k} \]

\[D = 16.41 \text{ k}^2 - 70.13 \text{ k}^2 + 51.09 \text{ k} - 471.32 \text{ k} \]

SOLVING FOR C, VIA MATHCAD

\[C = 4.85 \text{ in} \]

SUBSTITUTING C, INTO ONE OF THE P_n EQUATIONS

\[P_n = -16.41 \left(4.85 - 0.5 \left(\frac{d}{2} \right) \right)^2 + 135.16 \left(4.85 \right) + 164.26 \text{ k} = 437.32 \text{ k} \]

\[C \text{ and } P_n \text{, CHECK ASSUMPTIONS, THE STRAIN IN COMPRESSION AREA CAN BE FOUND VIA SIMILAR TRINANGLES:} \]

\[\frac{E_s}{0.003} = \frac{c - d}{c} \quad \Rightarrow \quad E_s = \frac{0.003 \left(4.85 - 0.5 \left(\frac{d}{2} \right) \right)}{4.85} \]

\[E_s = 0.00296 > 0.0014 \]

\[E_{0,3} \text{ for A36 steel} = \frac{36}{23000} = 0.00154 \]
Strain in σ_s more than yield strain (ε_y); therefore stress σ_s is equal to yield stress f_y around $\frac{d}{2}$, so compression steel has yielded.

Level of strain in tension steel:

$$\varepsilon_t = 0.003 \left(\frac{d - c}{c} \right) = 0.003 \left(\frac{3.5 - 4.85}{4.85} \right) = -0.00084 < \varepsilon_y = 0.0021$$

Second assumption that tension steel has not yielded will also correct, $\varepsilon < \varepsilon_t$, the nominal moment capacity of the short column in the given eccentricity is:

$$M_n = \rho_n c = (433.72 \times 1.684) = 730.4 \text{ k-in}$$

For compression members with non-spiral reinforcement, $d = 0.65$ ACI 318-11

$$\Phi P_n = (0.65)(433.72k) = \frac{281.92k}{P_n = 374k \text{ OK!}}$$

$$\Phi M_n = (0.65)(730.4k\text{-in}) = 474.96k\text{-in} > M_n = 60k\text{-in} \text{ OK!}$$
Solve Blocks for compression length of Stem walls

See calculations for 7" stem wall between mechanisms:

\[
c := 0 \quad \text{initial guess} \\
0 = 5.3965 c^3 - 23.06 c^2 + 189.9 c - 1508.91 \\
\text{find } c = 6.07
\]

See calculations for 7" stem wall at outer edges of box:

\[
c := 0 \quad \text{initial guess} \\
0 = 16.41 c^3 - 70.13 c^2 + 51.09 c - 471.98 \\
\text{find } c = 4.85
\]
Tire Contact Area Stopping Force on Stem Wall based on Kinetic Energy and Impulse Momentum Principles

The stem wall design will be checked for a conservative force generated by the tire area rolling through the rumble edge and generating a lateral force calculated using kinetic energy and momentum-impulse theorem equations.

Stopping Force based on Standard Deceleration Rates for 32 kip Axle (16 kip tire area) using kinematic equations

\[
V_f = 50 \text{ mph} \quad V_t = 73.3 \text{ ft/s} \quad W_{tire} = 16 \text{ kip}
\]

weight of tire contact area

\[
V_f = 25 \text{ mph} \quad V_t = 36.7 \text{ ft/s} \quad g = 32.2 \text{ ft/s}^2
\]

acceleration of gravity

\[
a_{design} = -3.4 \text{ m/s}^2
\]

\[
a_{max} = -5.6 \text{ m/s}^2
\]

\[
\Delta x_{design} = \frac{V_t^2 - V_f^2}{2 \cdot a_{design}} = 181 \text{ ft}
\]

\[
\Delta x_{max} = \frac{V_t^2 - V_f^2}{2 \cdot a_{max}} = 110 \text{ ft}
\]

distances to achieve, \(V_f\)

\[
KE_i = 0.5 \cdot \frac{W_{tire}}{g} \cdot V_f^2 = 1337 \text{ ft-kip}
\]

initial vehicle kinetic energy

\[
KE_f = 0.5 \cdot \frac{W_{tire}}{g} \cdot V_t^2 = 334 \text{ ft-kip}
\]

final vehicle kinetic energy

\[
\Delta t_{design} = \frac{V_f - V_t}{a_{design}} = 3.29 \text{ s}
\]

\[
\Delta t_{max} = \frac{V_f - V_t}{a_{max}} = 2 \text{ s}
\]

time to achieve, \(V_f\)

\[
F_{stop, design} = \left(\frac{W_{tire}}{g} \right) \cdot a_{design} = -5.56 \text{ kip}
\]

Deceleration stopping force for \(a_{design}\)

\[
F_{stop, max} = \left(\frac{W_{tire}}{g} \right) \cdot a_{max} = -9.14 \text{ kip}
\]

Deceleration stopping force for \(a_{max}\)
Impulse Force based on Change of Momentum for 32 kip Axle (16 kip tire area) using Momentum-Impulse Theorem

The Momentum-Impulse Theorem states that the change in momentum of an object is equal to the impulse exerted on it:

\[\Delta P = \text{Force} \times \text{Time} \]

Change in momentum = Impulse

\[P_f - P_i = \frac{W_{\text{tire}}}{g} \]

\[W_{\text{tire}} = 16 \text{ kip} \]

\[V_i = 50 \text{ mph} \quad V_f = 25 \text{ mph} \]

Initial vehicle momentum

\[P_i = V_i \times \left(\frac{W_{\text{tire}}}{g} \right) = 36 \text{ kip} \cdot \text{s} \]

Final vehicle momentum

\[P_f = V_f \times \left(\frac{W_{\text{tire}}}{g} \right) = 18 \text{ kip} \cdot \text{s} \]

Impulse Force Magnitude based on:

\[F_{\text{impulse,max}} = \frac{P_f - P_i}{\Delta t_{\text{max}}} = 9.14 \text{ kip} \]

\[\Delta t_{\text{max}} = 2 \text{ s} \]

Impulse Force Magnitude based on:

\[F_{\text{impulse,design}} = \frac{P_f - P_i}{\Delta t_{\text{design}}} = 5.55 \text{ kip} \]

\[\Delta t_{\text{design}} = 3.29 \text{ s} \]

Both calculation methods confirm that under the deceleration rate \(a_{\text{max}} \), the 16 kip tire contact area would need an opposing force of 9.14 kips applied over the period of \(\Delta t_{\text{max}} \). That deceleration impulse force would be applied over the full stopping distance of \(\Delta x_{\text{max}} \), but conservatively a 20" wide strip (matching width of tire contact area) of the stem wall will be checked if it can withstand this demand in shear.

\[F_{\text{impulse}} = \max \left(|F_{\text{impulse,max}}|, |F_{\text{impulse,design}}| \right) = 9.137 \text{ kip} \]

\[V_i = 1.00 \times F_{\text{impulse}} = 9.1 \text{ kip} \]

The strength level shear demand due to impulse momentum since beyond the conventional AASHTO code will be factored with 1.00 as would be applicable to vehicular collision (VC) or friction load (FR) in AASHTO 2012 Table 3.4.1-1

The impulse force would concurrently apply a flexural demand on the stem wall equivalent to the impulse force \(x \) the height of the stem wall \((h_{\text{stem,wall}}) \):

\[h_{\text{stem,wall}} = 9 \text{ in} \]

\[M_{\text{impulse}} = F_{\text{impulse}} \times 9 \text{ in} = 82.2 \text{ kip} \cdot \text{in} \]

Height of the stem wall

Flexural demand on stem wall due to impulse force.

The strength level flexural demand due to impulse momentum since beyond the conventional AASHTO code loadings, will be factored with 1.00 as would be applicable to vehicular collision (VC) or friction load (FR) in AASHTO 2012 Table 3.4.1-1

\[M_x = 1.00 \times M_{\text{impulse}} = 82.2 \text{ kip} \cdot \text{in} \]
Shear capacity of 7" thick stem wall w/ 1/8" PL on ea side (on one side for edge condition).

\[\phi_s = 0.75 \]

shear strength reduction factor

\[\lambda = 1.0 \]

lightweight concrete modification factor

\[d = 3.5 \text{ in} \]

d = effective depth - distance from extreme compression fiber to centroid of tensile reinf.

For the outside edge stem walls there is 1/8" PL on only one side so the effective depth is to the center reinforcement at half the stem wall thickness.

\[b_w = 20 \text{ in} \]

design strip width of stem wall

\[f'_c = 4500 \text{ psi} \]

specified compressive strength of concrete

\[f_y = 60 \text{ ksi} \]

specified yield strength of reinforcement (psi)

\[A_s = 1.55 \text{ in}^2 \]

tensile reinforcement for a 20" design strip using #5 (0.31 in^2/bar) @ 4" OC

\[\rho_w = \frac{A_s}{b_w \cdot d} = 0.0221 \]

ratio of reinforcement area \(A_s \) to \(b_w \cdot d \)

Per ACI 318-11 Section 11.2.2.1 Eq. (11-5), shear strength of members subject to shear and flexure only

\[\phi V_{c,11.2.2.1} = \left(1.9 \cdot \lambda \cdot \sqrt{\frac{f'_c}{\text{psi}}} + 2500 \cdot \rho_w \cdot \frac{V_u}{M_u} \right) \cdot \frac{b_w}{\text{in}} \cdot \frac{d}{\text{in}} \cdot \text{lbf} \]

\[\phi V_{c,11.2.2.1} = 10.4 \text{ kip} \]

\[V_u = 9.1 \text{ kip} \]

Check \(\phi V_c := \begin{cases} \text{"OK"} & \text{if } \phi V_{c,11.2.2.1} > V_u \\ \text{"Shear Strength Exceeded"} & \text{else} \end{cases} \]
Flexural capacity of 7" thick stem wall w/ 1/8" PL on one side and #5@4" OC tensile rein in middle

\[\phi_b = 0.90 \] flexure strength reduction factor for tension controlled sections

\[a = \frac{A_x \cdot f_y}{0.85 \cdot f'_c \cdot b_w} = 1.216 \text{ in} \] depth of equivalent rectangular compression stress block

\[\beta_i := \begin{cases} 0.85 & \text{if } f'_c \leq 4000 \text{ psi} \\ \frac{f'_c}{1000 \text{ psi}} & \text{if } f'_c > 4000 \text{ psi} \\ \frac{0.85 - 0.05 \cdot \left(f'_c - 4000 \text{ psi} \right)}{1000 \text{ psi}} & \text{max} \end{cases} = 0.8 \] ratio of the depth of rectangular stress distribution to the depth of the neutral axis

\[x_b := \frac{a}{\beta_i} = 1.5 \text{ in} \] the neutral axis is located \(x_b \) from the point of maximum compression

\[\varepsilon_t = \left(\frac{d - x_b}{x_b} \right) \cdot 0.003 = 0.0041 \] net strain in the tension steel

\[\text{check } \varepsilon_t = \begin{cases} \text{"Compression Controlled"} & \text{if } \varepsilon_t \leq 0.002 \\ \text{"Transition Range"} & \text{if } 0.002 < \varepsilon_t < 0.005 \\ \text{"Tension Controlled"} & \text{if } \varepsilon_t \geq 0.005 \end{cases} \]

\[\varepsilon_{t, \text{adj}} = \begin{cases} 0.65 & \text{if } \varepsilon_t \leq 0.002 \\ 0.65 + \left(\varepsilon_t - 0.002 \right) \cdot \left(\frac{250}{3} \right) & \text{if } 0.002 < \varepsilon_t < 0.005 \\ 0.90 & \text{if } \varepsilon_t \geq 0.005 \end{cases} \]

Nominal flexural strength of stem wall 20" wide design section

\[\phi M_n := \phi_{b, \text{adj}} \cdot A_x \cdot f_y \cdot \left(d - \frac{a}{2} \right) = 222.5 \text{ kip } \cdot \text{in} \]

\[M_n = 82.2 \text{ kip } \cdot \text{in} \]

\[\phi M_n = 18.5 \text{ ft } \cdot \text{kip} \] check: \(\phi M_n := \begin{cases} \text{"OK"} & \text{if } \phi M_n > M_n \\ \text{"Flexural Strength Exceeded"} & \text{else} \end{cases} \]
tion time for stopping sight distance situations encompasses the capabilities of most drivers (including those of older drivers). In fact, the data shows that 2.0 sec exceeds the 85th percentile SSD perception-brake reaction time for all drivers, and 2.5 sec exceeds the 90th percentile SSD perception-brake reaction time for all drivers.

Thus, the 2.5 sec value should be used for determining required stopping sight distances; however, it should be noted that at locations where stopping sight distance is not the appropriate control, different perception-reaction times may be appropriate. For example, shorter perception-brake reaction times may be appropriate for traffic signal design where change intervals are expected, and longer perception-brake reaction times may be appropriate for intersection or interchange design where driver speed and path corrections are unexpected.

Design Deceleration

This research and other studies documented in the literature show that most drivers choose decelerations greater than 5.6 m/sec² when confronted with the need to stop for an unexpected object in the roadway. Approximately 90 percent of all drivers choose decelerations that are greater than 3.4 m/sec². These decelerations are within drivers' capability to stay within their lanes and maintain steering control during braking maneuvers on wet surfaces. Thus, 3.4 m/sec² (a comfortable deceleration for most drivers) is recommended as the deceleration threshold for determining required stopping sight distance. Implicit in this deceleration threshold is the requirement that the vehicle braking system and pavement friction values are at least equivalent to 3.4 m/sec² (0.34 g). Skid data show that most wet pavement surfaces on state maintained roadways exceed this threshold. Braking data show that most vehicle braking systems can exceed the skidding friction values for the pavement.

Recommended Stopping Sight Distances

The recommended stopping sight distances for design are based on below-average drivers detecting an unexpected object in the roadway and stopping a vehicle before striking the object. The recommended values are shown in Table 57. The values in the bottom five rows of the table are those stopping sight distances beyond the driver's visual capabilities for detecting small objects (150 to 200 mm objects) during the day and large, low contrast objects at night.

For comparison purposes, AASHTO's 1994 design stopping sight distances are shown in Table 58 and Figure 19. Note that the recommended values are approximately midway between the 1994 minimum and desirable values for all initial speeds.

Eye Heights and Object Heights

This research and other studies documented in the literature show that more than 90 percent of all passenger-car driver eye heights exceed 1,080 mm. This eye height encompasses an even larger proportion of the vehicle fleet when trucks and multipurpose vehicles are included in the population. Thus, 1,080 mm is recommended as the driver eye height for determining required stopping sight distances.

<table>
<thead>
<tr>
<th>Initial Speed (km/h)</th>
<th>Perception-Brake Reaction</th>
<th>Deceleration (m/s²)</th>
<th>Braking Distance (m)</th>
<th>Stopping Sight Distance for Design (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (s)</td>
<td>Distance (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.5</td>
<td>20.8</td>
<td>3.4</td>
<td>10.2</td>
</tr>
<tr>
<td>40</td>
<td>2.5</td>
<td>27.8</td>
<td>3.4</td>
<td>18.2</td>
</tr>
<tr>
<td>50</td>
<td>2.5</td>
<td>34.7</td>
<td>3.4</td>
<td>28.4</td>
</tr>
<tr>
<td>60</td>
<td>2.5</td>
<td>41.7</td>
<td>3.4</td>
<td>40.8</td>
</tr>
<tr>
<td>70</td>
<td>2.5</td>
<td>48.6</td>
<td>3.4</td>
<td>55.5</td>
</tr>
<tr>
<td>80</td>
<td>2.5</td>
<td>55.6</td>
<td>3.4</td>
<td>72.5</td>
</tr>
<tr>
<td>90</td>
<td>2.5</td>
<td>62.5</td>
<td>3.4</td>
<td>91.9</td>
</tr>
<tr>
<td>100</td>
<td>2.5</td>
<td>69.4</td>
<td>3.4</td>
<td>113.5</td>
</tr>
<tr>
<td>110</td>
<td>2.5</td>
<td>76.4</td>
<td>3.4</td>
<td>137.3</td>
</tr>
<tr>
<td>120</td>
<td>2.5</td>
<td>83.3</td>
<td>3.4</td>
<td>163.4</td>
</tr>
</tbody>
</table>
SECTION 400
EMBED ANGLE
EMBED ANGLE CAPACITY TO BREAKING FORCE

THE ANGLE ANGLES NEED TO BE DESIGNED TO RESIST LATERAL FORCE DUE TO DESIGN TRAFFIC LOAD BREAKING FORCE.

AS SHOWN ON PAGE 2, THE PPA WOULD BE 1880 PLF DUE TO 25% OF DESIGN TRUCK 4.

THAT LATERAL PRESSURE WILL BE FACTORED AND ONLY A PORTION OF IT APPLIED THAT IS IN CONTACT WITH HORIZONTAL LEG OF THE L3X3 ANGLES.

\[P_{wa} = 1.75 \left(\frac{2.860}{55} \right) \frac{3\text{ in.}}{12\text{ in.}} = 1260 \text{ PLF} \]

THE ANGLE EMBED STUDS SHALL BE DESIGNED FOR THIS FORCE. THE BREAKING FORCE CAN BE BROKEN DOWN INTO COMPONENTS REPRESENTING A TENSION AND SHEAR DEMAND ON EA STUD.

SHEAR
\[V_s = P_{wa} \cos(45^\circ) = (1260 \text{ PLF}) \cos(47^\circ) = 831 \text{ #/ft} \]

TENSION
\[T_u = P_{wa} \sin(45^\circ) = (1260 \text{ PLF}) \sin(45^\circ) = 831 \text{ #/ft} \]

ANCHOR ROD IN TENSION

THE REQUIRED ANCHOR AREA IN EQUATION 13:

\[A_\text{anch} = \frac{T_u}{\phi F_{tu}} = \frac{831 \text{ #/ft}}{0.831 \text{ kN/m}} = 0.98 \text{ kN/m} \]

\[A_{\text{rod}} = 0.0205 \text{ in}^2/\text{ft} \]

\[\phi R_n = (0.75)(65 \text{ kN})(0.1104 \text{ in.}) = 5.382 \text{ kN} > 0.831 \text{ kN/m} \]

SEE MATHCAD FOR REST OF CALCULATIONS.
THROUGH LAW OF SINES

\[
\sin(15' + 35') = \frac{\sin(55')}{h_{ef}}
\]

\[
C_{ai} = \frac{h_{ef} \sin(55')}{\sin(80')}
\]
Conexión de ángulo de inserción con estud de estándar

The rumble strip embed angle will be anchored to the concrete stem walls in between each mechanism w/ standard studs per AWS D1.1 Chapter 7. The stud size, spacing and embed depth will be dependent on the AASHTO LRFD factored braking force calculated separately. The braking force is resolved in a tension and shear force for the anchors since they are welded at a 45 degree angle to the horizontal.

Refer to hand calculations for braking force

Connection Demand

\[\theta_{\text{stud}} = 45^\circ \]

Angle of stud to vector of braking force

\[P_{u, BR} = 1260 \text{ plf} \]

Axial force in brace based on governing RAM seismic LC with a \(\rho \) factor of 1.0 and a \(\Omega_0 \) of 2.0 for Steel SCBF

Material Strengths

\[f'_c = 4500 \text{ psi} \quad E_{\text{steel}} = 29000 \text{ ksi} \]

Maximum Shear and Tension Forces from RAM

Following at the maximum shear and tension forces a braced frame column connection from RAM steel lateral analysis of the steel frame building:

\[N_{u, MAX} = P_{u, BR} \cdot \cos(\theta_{\text{stud}}) = 890.955 \text{ plf} \]

\[V_{u, MAX} = P_{u, BR} \cdot \sin(\theta_{\text{stud}}) = 890.955 \text{ plf} \]

\[N_{u, MAX} = 891 \text{ plf} \quad \text{Maximum Tension} \]

\[V_{u, MAX} = 691 \text{ plf} \quad \text{Maximum Shear} \]

Dimensions of Concrete Member for Embed Angle

\[W_{\text{footing}} = 7 \text{ in} \quad L_{\text{footing}} = 12 \text{ ft} \quad D_{\text{footing}} = 15 \text{ in} \]
Anchor Rod / Stud Spacing

- $S_{trans} = 0$ in
- $S_{long} = 12$ in
- $L_{angle} = 11$ ft
- $W_{angle} = 3$ in
- $t_{angle} = 0.25$ in
- $Anchor_{edgeD} = 2$ in
- $d_{anchor} = \frac{3}{8}$ in
- $A_{se,N} = \frac{\pi \cdot d_{anchor}^2}{4} = 0.11$ in2
- $H_{stud,dia}\left(d_{anchor}\right) = 0.75$ in

Anchor Spacing on embed angle

- $H_{stud,dia}(x) = \begin{cases}
0.375 \text{ in} & \text{if } x = 0.375 \text{ in} \\
0.75 \text{ in} & \text{if } x = 0.50 \text{ in} \\
1 \text{ in} & \text{if } x = 0.625 \text{ in} \\
1.25 \text{ in} & \text{if } x = 0.75 \text{ in} \\
1.25 \text{ in} & \text{if } x = 1 \text{ in} \\
\end{cases}$

Cross-Sectional Area per Anchor Stud

- $A_{se,N} = \frac{\pi \cdot d_{anchor}^2}{4} = 0.11$ in2

Stud Head Diameter per AWS D1.1 Figure 7.1

- $H_{stud,dia}(d_{anchor}) = 0.75$ in

Eccentricity of load from centroid of anchors loaded in tension

- $e'_{N} = 0$ in

Define Effective Embed Depth

- $h_{ef} = 4$ in

Angle of failure for concrete breakout

- $\theta_{ef} = 35^\circ$

Distance from center of anchor to edge of concrete perpendicular to the edge in the vertical or horizontal direction, solved via the law of sines (see figure):

$$c_{sf} = \frac{h_{ef} \cdot \sin\left(90^\circ - \theta_{ef}\right)}{\sin\left((90^\circ - \theta_{stud}) + \theta_{ef}\right)} = 3.327 \text{ in}$$

Distance from center of edge anchors to edge of concrete in the direction perp to c_{sf}, but parallel to embed angle:

$$c_{sa} = \min\left(0.5 \cdot (L_{footing} - L_{angle}) + \text{Anchor}_{edgeD} \cdot 1.5 \cdot h_{ef}\right) = 6 \text{ in}$$

References

- ACI 318-11
 - Appendix D
 - 2.1 definitions
 - D.3.3.4.4 (d)
 - D.4.1
Material Strengths
Per ACI D.3.3.7 anchor related reinforcement used in structures assigned to Seismic Design Category C, D, E, or F shall be ASTM A706 Grade 60

\[
\begin{align*}
 f_{y, A706, Gr60} &= 60000 \text{ psi} \\
 f_{u, A706, Gr60} &= 80000 \text{ psi} \\
 f_{y, stud} &= 51 \text{ ksi} \\
 f_{u, stud} &= 65 \text{ ksi} \\
 f_c &= 5000 \text{ psi} \\
 E_{steel} &= 29000 \text{ ksi} \\
 \psi_{concrete} &= 150 \text{ pcf}
\end{align*}
\]

Stud yield and tensile strength per AWS D1.1 Table 7.1 Type B

CHECK 1: D.3.3.4.4(a) Minimum required area of anchors based on tensile force:
Nominal Strength of the rebar Anchor is:

\[
N_{sa} := \min \left(f_{u, stud}, 1.9 \cdot f_{y, stud}, 125 \text{ ksi} \right) \cdot A_{sa,N} = 7.179 \text{ kip}
\]

\[
\phi N_{sa} := 0.75 \cdot \min \left(f_{u, stud}, 1.9 \cdot f_{y, stud}, 125 \text{ ksi} \right) \cdot A_{sa,N} = 5.384 \text{ kip}
\]

Required # of Anchors based on selected size:
(note "ceil(x,2)" rounds x up to the nearest full bar size that's also a multiple of 2)

\[
\begin{align*}
 \#\text{ofAnchors}_{\text{REQD}} &= \text{Ceil} \left(\frac{N_{u, MAX} \cdot L_{angle}}{\phi N_{sa}} \right) \\
 \#\text{ofAnchors}_{\text{REQD}} &= 2
\end{align*}
\]

\[
\begin{align*}
 \phi N_{sa,g} &= \phi N_{sa} \cdot \#\text{ofAnchors}_{\text{REQD}} = 59.23 \text{ kip} \\
 N_{u, MAX} \cdot L_{angle} &= 9.8 \text{ kip}
\end{align*}
\]

CHECK \(\phi N_{sa,g} \):

\[
\begin{align*}
 \text{if } \phi N_{sa,g} > N_{u, MAX} \cdot L_{angle} \\
 \text{ then } \text{"OK"} \\
 \text{else } \text{"Size & Spacing Anchors NOT OK"}
\end{align*}
\]

CHECK 2: D.3.3.4.4(b) Concrete breakout strength per ACI 318-11 Appendix D using the Concrete Capacity Design (CCD) method

\[
\begin{align*}
 e' &= 0 \text{ in} \\
 h_{eff} &= 4 \text{ in} \\
 D_{footing} &= 3 \text{ in} = 12 \text{ in} \\
 \psi_{cc,N} &= \min \left(\frac{1}{1 + \frac{2 \cdot e'}{3 \cdot h_{eff}}} \right) = 1
\end{align*}
\]

\[
\begin{align*}
 1.5 \cdot h_{eff} &= 6 \text{ in} \\
 c_{sa,MIN} &= \min (c_{sa1}, c_{sa2}) = 3.327 \text{ in}
\end{align*}
\]
\[
\Psi_{ed,N} = \begin{cases}
1.0 & \text{if } c_{a,MIN} \geq 1.5 \cdot h_{ef} \\
0.7 + 0.3 \cdot \frac{c_{a,MIN}}{1.5 \cdot h_{ef}} & \text{if } c_{a,MIN} < 1.5 \cdot h_{ef}
\end{cases}
\]

Modification factor for edge effects for single anchors or anchor group loaded in tension (D-9) (D-10)

\[
\Psi_{c,N} = 1.00
\]

Modification factor for cast-in or post-installed anchors locate in a cracked or non cracked region of a concrete members (D.5.2.6)

[1.25] for cast-in anchors/no cracking

[1.40] for post-installed anchors/no cracking

k.c is 17

[1.00] for all anchors w/ cracked concrete

Second Modification factor for cast-in or post-installed anchors located in a cracked or non cracked region of a concrete members (D.5.2.7)

\[
\Psi_{c,\psi,N} = 1.00
\]

Refer to code for post-installed anchors

[1.00] for all cast in anchors

The basic concrete breakout strength of a single anchor in tension in cracked concrete \(N_b \) per D5.2.2 shall be found as follows

\[
k_c = 24
\]

[24] for cast-in anchors

[17] for post-installed anchors

\[
\lambda = 1.00
\]

Lightweight concrete modification factor

[1.00] for normal weight concrete

[0.85] for sand-lightweight concrete

[0.75] for all lightweight concrete

Per D.3.6 Modification factor for failure of anchors in Lightweight concrete

\[
\lambda_a = 1.0 \cdot \lambda
\]

[1.0 \lambda] for cast-in and undercut anchor concrete failure

[0.8 \lambda] for expansion/adhesive anchor concrete failure

[0.7 \lambda] for adhesive anchor bond failure per (D-22)

\[
N_{b,1} = k_c \cdot \lambda_a \cdot \sqrt{\frac{f_c}{\text{psi}}} \cdot \left(\frac{h_{ef}}{\text{in}}\right)^{1.6} \cdot \text{lb} = 13.6 \text{ kip}
\]

The basic concrete breakout strength of a single anchor in tension in cracked concrete

\[
N_{b,2} = 16 \cdot \lambda_a \cdot \sqrt{\frac{f_c}{\text{psi}}} \cdot \left(\frac{h_{ef}}{\text{in}}\right)^{0.5} \cdot \text{lb} = 11.4 \text{ kip}
\]

\[
N_b = \begin{cases}
N_{b,2} & \text{if } 11 \text{ in} \leq h_{ef} \leq 25 \text{ in} \\
N_{b,1} & \text{else}
\end{cases}
\]

\[
N_b = 13.576 \text{ kip}
\]

Breakout area for a single anchor not limited by edge distance or spacing of anchors (D-5)

\[
A_{Nec} = 9 \cdot h_{ef}^2 = 1 \text{ ft}^2 \quad A_{Nec} = 144 \text{ in}^2
\]
Breakout area for anchor group limited by edge distance

\[\text{Rows}_{\text{bar}} = 1 \] Define the # of rows the anchor group is laid out in longitudinally

\[S_{\text{trans}} = 0 \text{ in} \] rebar anchor spacing as defined earlier

\[S_{\text{long}} = 12 \text{ in} \] earlier

\[\# \text{of Anchors} = 11 \text{ anchors/row} \]

Distance from center of anchors to edge of concrete in the direction of shear

\[c_{\text{ef}} = 3.327 \text{ in} \] \[c_{\text{ef}} = 0.277 \text{ ft} \]

Distance from center of anchors to edge of concrete in the direction perpendicular to \(c_{\text{ef}} \)

\[c_{\text{a2}} = 6 \text{ in} \]

\[c_{\text{a,MIN}} = 3.327 \text{ in} \]

\[1.5 \cdot h_{\text{ef}} = 6 \text{ in} \] \[\min (1.5 \cdot h_{\text{ef}}, c_{\text{a2}}) = 3.33 \text{ in} \]

\[\min (1.5 \cdot h_{\text{ef}}, c_{\text{a2}}) = 6 \text{ in} \]

\[A_{Nc} = \left(2 \cdot \min (1.5 \cdot h_{\text{ef}}, c_{\text{a2}}) + \left(\frac{\# \text{of Anchors}}{\text{Rows}_{\text{bar}}} - 1\right) \cdot S_{\text{long}}\right) \left((2 \cdot \min (1.5 \cdot h_{\text{ef}}, c_{\text{a2}})) + (\text{Rows}_{\text{bar}} - 1) \cdot S_{\text{trans}}\right) \]

\[A_{Nc} = 878.4 \text{ in}^2 \]

\[A_{Nc} = 6.1 \text{ ft}^2 \]

\[\text{Breakout area for anchor group limited by edge distances of spread mat footing} \]

Per D.5.2.1, breakout area for anchor group limited by edge distances of spread mat footing, \(A_{Nc} \) shall not exceed \(n \cdot A_{Nc0} \) where \(n \) is the # of anchors

\[A_{Nc,MAX} = \# \text{of Anchors} \cdot A_{Nc0} = 11 \text{ ft}^2 \]

\[\text{CHECK}_{A_{Nc}} := \begin{cases} \text{OK} & \text{if } A_{Nc} < A_{Nc,MAX} \\ \text{"CHECK ANCHOR SPACING"} & \text{else} \end{cases} \]

\[N_{cbg} = \frac{A_{Nc} \cdot \psi_{ec,N} \cdot \psi_{ed,N} \cdot \psi_{c,N} \cdot \psi_{dp,N} \cdot N_b}{A_{Nc0}} \] Nominal concrete breakout strength in tension of a group of anchors

\[N_{cog} = 71.746 \text{ kip} \]

\[\phi_{\text{concrete}} = 0.70 \]

Refer to ACI 318-11 D.4.3(c)

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.75</td>
</tr>
<tr>
<td>B</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Where supplementary reinforcement is provided

Where supplementary reinforcement is NOT provided

ACI 318-11 Appendix D (D-4)

ACI 318-11 D.4.3(c) D.3.3.4.4 (b)
\[\Phi_{\text{concrete}} \cdot N_{\text{cbr}} = 50.222 \text{ kip} \]

\[\text{Utilization}_{\text{BREAKOUT}} = \frac{N_{u,\text{MAX}} \cdot L_{\text{angle}}}{\Phi_{\text{cbr}}} = 0.195 \quad N_{u,\text{MAX}} \cdot L_{\text{angle}} = 9.8 \text{ kip} \]

\[\text{CHECK}_\Phi N_{\text{cbr}} = \begin{cases} \text{"OK"} & \text{if Utilization}_{\text{BREAKOUT}} < 1.0 \\ \text{else} & \text{"Increase h.e.f, or add anchor reinforcement per D.5.2.9"} \end{cases} \]

\[\text{CHECK}_\Phi N_{\text{cbr}} = \text{"OK"} \]

CHECK 3: Concrete Pullout Strength 0.75 \(\Phi_{\text{ptr}} \) per ACI 318-11 App. D D.3.3.4.4 (c) for a single anchor, or the most highly stressed anchor in a group of anchors.

The \(A_{\text{big}} \) area is calculated based on the head diameter of standard studs per AWS D1.1 Figure 7.1.

\[H_{\text{stud,dis}} (d_{\text{anchor}}) = 0.75 \text{ in} \quad \text{Stud Head Diameter per AWS D1.1 Figure 7.1} \]

\[A_{\text{se,N}} = 0.11 \text{ in}^2 \]

\[A_{\text{big}} = \frac{\pi \cdot (H_{\text{stud,dis}} (d_{\text{anchor}}))^2}{4} - A_{\text{se,N}} = 0.331 \text{ in}^2 \]

Net bearing area of stud head

Per D.5.3.6 modification factor for cracked or uncracked concrete:

\[\psi_{c,p} = 1.0 \quad [1.4] \text{ for no cracking of concrete at service level loads} \]

\[[1.0] \text{ for cracking of concrete at service level loads} \]

Per D.5.3.4 pullout strength in tension of a single headed stud/headed bolt, \(N_p \) shall not exceed:

\[N_p = 8 \cdot A_{\text{big}} \cdot f'_c = 13.254 \text{ kip} \]

Per D.5.3.1 nominal pullout strength in tension of a single anchor shall not exceed:

\[N_{\text{ptr}} = \psi_{c,p} \cdot N_p = 13.254 \text{ kip} \]

Per D.4.3, anchor governed by concrete breakout, side-face blowout, pullout, or pryout shall use reduction factor \(\phi \) below:

\[\phi_{\text{CONC Tension}} = 0.70 \]

[0.75] if supplementary reinforcement for TENSION is included (Condition A) similar to Fig RD.5.2.9

[0.70] if no supplementary reinforcement for TENSION is included (Condition B) similar to Fig RD.5.2.9
Concrete Pullout Strength 0.75 ϕN_{pn} of an individual anchor in a group needs to exceed max tensile load on an individual anchor, $N_{ub,i}$ which is identified through HILTI modelling of the anchor layout or defined here:

$$N_{ub,i} = \frac{N_{u,MAX} \cdot \angle_{angle}}{\# of Anchors} = 891 \text{ lbf}$$

$$\phi N_{pn} = 0.75 \cdot \phi_{conc, tension} \cdot N_{pn} = 6958.1 \text{ lbf}$$

```
CHECK $\phi N_{pn} := \begin{cases} \text{"Concrete Pullout OK"} & \text{if } \phi N_{pn} > N_{ub,i} \\ \text{"Revise Stud Size or Spacing"} & \text{else} \end{cases}
```

CHECK $\phi N_{pn} =$"Concrete Pullout OK"
CHECK 4: Concrete Side-Face Blowout Strength $0.75 \phi N_{sb}$ for single anchor and for group $0.75 \phi N_{sbg}$ per ACI 318-11 Appendix D, D.3.3.4.4 (d)

$h_{ef} = 4 \text{ in}$
$2.5 \cdot c_{af} = 8.318 \text{ in}$
$s = \text{S}_\text{long} = 12 \text{ in}$
$\frac{c_{a2}}{c_{a1}} = 1.803$

distance between the outer anchors along the edge where break

$c_{af} = 3.327 \text{ in}$
$3.0 \cdot c_{af} = 9.981 \text{ in}$

$N_{sb} := \begin{cases}
\text{if } h_{ef} > 2.5 \cdot c_{af} \\
\quad \text{if } c_{a2} \geq 3 \cdot c_{af} \\
\quad \quad \left(\frac{A_{bg}}{\text{in}^2} \right) \cdot A_s \cdot \sqrt{\frac{f_c}{\text{psi}}} \cdot \text{lbf} \\
\quad \text{if } c_{a2} < 3 \cdot c_{af} \\
\quad \quad \left(1 + \frac{c_{a2}}{c_{a1}}\right) \cdot \frac{1}{4} \left(160 \cdot c_{af} \sqrt{\frac{A_{bg}}{\text{in}^2}} \cdot A_s \cdot \sqrt{\frac{f_c}{\text{psi}}} \cdot \text{lbf} \right) \\
\quad \text{else} \\
\quad \quad \text{"NO RISK OF SIDE-FACE BLOW OUT"}
\end{cases}$

$N_{sb} = \text{"NO RISK OF SIDE-FACE BLOW OUT"}$

$N_{sbg} := \begin{cases}
\text{if } h_{ef} > 2.5 \cdot c_{af} \\
\quad \text{if } s < 6 \cdot c_{af} \\
\quad \quad 6 \cdot c_{af} = 19.963 \text{ in} \\
\quad \quad \left(1 + \frac{s}{6 \cdot c_{af}}\right) \cdot N_{sb} \\
\quad \text{else} \\
\quad \quad \text{"NO RISK OF SIDE-FACE BLOW OUT"}
\end{cases}$

$N_{sbg} = \text{"NO RISK OF SIDE-FACE BLOW OUT"}$

$\phi N_{sbg} := \begin{cases}
\text{if } h_{ef} > 2.5 \cdot c_{af} \\
\quad \phi_{\text{conc. Tension}} \cdot N_{sbg} \\
\quad \text{else} \\
\quad \text{"NO RISK OF SIDE-FACE BLOW OUT"}
\end{cases}$

$\phi N_{sbg} = \text{"NO RISK OF SIDE-FACE BLOW OUT"}$

CHECK $\phi N_{sbg} = \text{"NG or NO CALC"}$
CHECK 5: Bond strength of an adhesive anchor N_a for single anchor and for group N_{ag} per ACI 318-11 Appendix D, D.3.3.4.4 (e) NOT required for cast-in headed anchors

CHECK 6: Steel Strength of Anchor in Shear V_{sa} Per ACI 318-11 Appendix D (D.6.1)

The anchor or group of anchors are designed for the maximum shear obtained from design load combinations that include Q_e *E

$$A_{se,N} = 0.11 \text{ in}^2$$

$$\text{min} \left(f_{u,\text{stud}}, 1.9 \cdot f_{y,\text{stud}} \cdot 126 \text{ ksi} \right) = 65 \text{ ksi}$$

$$V_{ua,i} = \frac{V_{u,\text{MAX}} \cdot L_{\text{angle}}}{\# \text{of Anchors}} = 0.891 \text{ kip}$$

$$\phi_{V_{sa}} = 0.60 \cdot \text{min} \left(f_{u,\text{stud}}, 1.9 \cdot f_{y,\text{stud}} \cdot 126 \text{ ksi} \right) \cdot A_{se,N}$$

$$V_{sa} = 4.307 \text{ kip}$$

$\phi_{V_{sa}} = 0.65$ per D.4.3 for shear when anchor governed by ductile steel element

Per D.6.1.3

$\phi_{GROUT} = 1.00$

[1.00] for anchors with no built-up grout pad

[0.80] for anchors with built-up grout pad

$\phi_{V_{sa}} = \phi_{V_{sa}} \cdot \phi_{GROUT} \cdot V_{sa} = 2800 \text{ lbf}$

$\text{CHECK}_{\phi_{V_{sa}}} := \text{if } \phi_{V_{sa}} > V_{ua,i} \quad \text{"OK"}$

else

$\text{ADD MORE ANCHORS or RESIZE}$

$\text{CHECK}_{\phi_{V_{sa}}} = \text{"OK"}$

CHECK 7: Concrete Breakout Strength V_{cb} in Shear per ACI 318-11 Appendix D (D.6.2)

For shear force perpendicular to the edge on a single anchor:

$$c_{a1} = 3.327 \text{ in}$$

$$c_{a2} = 6 \text{ in}$$

$$1.5 \cdot c_{a1} = 4.991 \text{ in}$$

$$h_a := D_{\text{footing}} = 15 \text{ in}$$

$$c'_{a1} := \text{if max} \left(\frac{c_{a2}}{c_{a1}}, h_a \right) < 1.5 \cdot c_{a1}$$

$$\text{else} \quad \text{max} \left(\frac{c_{a2}}{1.5}, h_a \cdot s \cdot 3 \right)$$

$$c_{a1} = 3.327 \text{ in}$$

Recall distance from center of anchors to edge of concrete in the direction of shear and that perpendicular.

Per ACI D.6.2.4, where anchors are located in narrow sections of limited thickness so that both edge distances c_{a2} and h_a are less than $1.5 \cdot c_{a1}$ the value of c_{a1} used for calculating A_{uc2} as well as in eqns (D-32) through (D-39) shall not exceed largest of:

a) $c_{a2}/1.5$, where c_{a2} is largest edge distance

b) $h_a/1.5$, and

c) $s/3$, where s is the max spacing perpendicular to direction of shear, between anchors in group
$A_{Vc} := 4.5 \cdot (c'_{at})^2 = 49.8 \text{ in}^2$

Projected concrete failure area of a single anchor for calculating shear strength if not limited by corner influences, spacing, or member thickness (D-32)

Actual projected concrete failure area of a group of anchors for calculating shear strength if when limited by corner influences, spacing, or member thicknesses

$A_{Vc} := \min (L_{footing}, (\# \text{ of Anchors} - 1) \cdot S_{long} + 2 \cdot (1.5 \cdot c'_{at})) \cdot \min (D_{footing}, (1.5 \cdot c'_{at})) = 4.505 \text{ ft}^2$

$A_{Vc} = 648.7 \text{ in}^2$

$\min (D_{footing}, (1.5 \cdot c'_{at})) = 4.991 \text{ in}$

$l_e := \min (h_{ef}, 8 \cdot d_{anchor}) = 3 \text{ in}$

load bearing length of the anchor for shear

$l_e = h_{ef}$ but no longer that $8 d_{anchor}$ (D-6.2.2)

Per D.6.2.2, the basic concrete breakout strength in shear of a single anchor in cracked concrete shall be the smaller of (a) and (b)

(a) $V_{b,1} := 7 \cdot \left(\frac{l_e}{d_{anchor}} \right)^{0.2} \cdot \sqrt{\frac{d_{anchor}}{\text{in}}} \cdot \lambda_b \cdot \sqrt{\frac{f_c}{\text{psi}}} \cdot \left(\frac{c'_{at}}{\text{in}} \right)^{1.5} \cdot \text{lbf} = 2.788 \text{ kip}$

(b) $V_{b,2} := 9 \cdot \lambda_b \cdot \sqrt{\frac{f_c}{\text{psi}}} \cdot \left(\frac{c'_{at}}{\text{in}} \right)^{1.5} \cdot \text{lbf} = 3.862 \text{ kip}$

$V_b := \min (V_{b,1}, V_{b,2})$

$V_b = 2.788 \text{ kip}$

Per D.6.2.5 Modification factor for anchor groups

loaded eccentrically in shear

$e'_{V} = 0 \text{ in}$ eccentricity in anchors

$\psi_{ec \cdot V} := \min \left(1, \frac{1}{1 + \frac{2 \cdot e'_{V}}{3 \cdot c'_{at}}} \right)$

$\psi_{ec \cdot V} = 1.0$

Reference

ACI 318-11
Appendix D
D.6.2
D.6.2.1
D.6.2.4

ACI 318-11
Appendix D
D.6.2.2

ACI 318-11
Appendix D
D.6.2.5
Modification factor for edge effect for a single anchor or group of anchors loaded in shear:

\[
\Psi_{ed,V} = \begin{cases}
1.00 & \text{if } c_{a2} \geq 1.5 \cdot c'_{af} \\
0.7 + 0.3 \cdot \frac{c_{a2}}{1.5 \cdot c'_{af}} & \text{if } c_{a2} < 1.5 \cdot c'_{af}
\end{cases}
\]

\[
\Psi_{ed,V} = 1.00
\]

Modification factor for concrete cracked state and edge reinforcement for a single anchor or group of anchors loaded in shear:

\[
\Psi_{c,V} = 1.0
\]

- [1.4] for anchors in concrete with no cracking
- [1.0] for anchors in cracked concrete with no supplementary reinforcement or with edge reinforcement smaller than #4 bar
- [1.2] for anchors in cracked concrete with supplementary reinforcement or with edge reinforcement #4 bar or greater
- [1.4] for anchors in cracked concrete supplementary reinforcement #4 bar or greater between anchor and edge, and with the reinforcement enclosed with stirrups spaced 4\" or less

Modification factor for anchors located in a concrete member where \(h_a < 1.5 \cdot c'_{af} \):

\[
\Psi_{h,V} = \max \left(1, \sqrt{\frac{1.5 \cdot c'_{af}}{h_a}} \right)
\]

\[
\Psi_{h,V} = 1
\]

For shear force perpendicular to the edge on a group of anchors:

\[
V_{cgb} = \frac{A_{vc}}{A_{vco}} \cdot \Psi_{ec,V} \cdot \Psi_{ed,V} \cdot \Psi_{c,V} \cdot \Psi_{h,V} \cdot V_0
\]

\[
V_{cgb} = 36.309 \text{ kip} \quad \text{(D-31)}
\]

\[
\phi_{conc, Shear} = 0.70
\]

\[
\phi V_{cgb} = \phi_{conc, Shear} \cdot V_{cgb} = 25.416 \text{ kip}
\]

\[
V_{u,MAX} \cdot L_{angle} = 9.8 \text{ kip}
\]

CHECK \(\phi V_{cgb} = \text{if } \phi V_{cgb} > V_{u,MAX} \cdot L_{angle} \)

\[
\begin{align*}
\text{"OK"} & \quad \text{if } \phi V_{cgb} = \text{OK} \\
\text{"CONCRETE BREAKOUT"} & \quad \text{else}
\end{align*}
\]

CHECK \(\phi V_{cgb} = \text{"OK"} \)
CHECK 8: Steel Failure from Spalling Adjusted Lever Arm

Level of Restraint

The value \(a_m \) depends on the degree of restraint of the anchor at the side of the fixture of the application in question and shall be judged according to good engineering practice.

No restraint (\(a_m = 1.0 \)) shall be assumed if the fixture can rotate freely.
Full restraint (\(a_m = 2.0 \)) may be assumed only if the fixture cannot rotate.

\[
\text{Grout Thickness} = 0 \text{ in}
\]

Level of restraint

\[t_{angle} = 0.25 \text{ in} \]

Thickness of grout under base PL

\[t_{steel} = \frac{z_{standoff} + \frac{t_{angle}}{2}}{0.125 \text{ in}} \]

Thickness of steel base PL

\[L_b = z_{standoff} + 0.5 \cdot d_{anchor} = 0.313 \text{ in} \]

internal lever arm adjusted for spalling of the surface concrete

\[M_{s0} = 1.2 \cdot \left(\frac{\pi \cdot d_{anchor}^3}{32} \right) \cdot f_{u,stud} \]

characteristic flexural resistance of anchor

\[M_{s0} = 404 \text{ in} \cdot \text{lbf} \]

\[
1 - \frac{N_{u,i}}{\phi N_{sa}} = 0.835
\]

Resultant Flexural Resistance of Anchor

\[M_s = M_{s0} \cdot \left(1 - \frac{N_{u,i}}{\phi N_{sa}} \right) = 337 \text{ in} \cdot \text{lbf} \]

Bending equation for stand-off

\[V_{Ms} = \frac{a_m \cdot M_s}{L_b} = 2157 \text{ lbf} \]

\[\phi V_{Ms} = 0.65 \cdot V_{Ms} = 1401.9 \text{ lbf} \]

\[V_{ua,i} = 891 \text{ lbf} \]

\[
\text{CHECK}_\phi \phi V_{Ms} = \begin{cases}
\text{"OK" if } \phi V_{Ms} \geq V_{ua,i} \\
\text{"Revise ANCHOR Diameter" otherwise}
\end{cases}
\]

\[\text{CHECK}_\phi \phi V_{Ms} = \text{"OK"} \]
CHECK 9: Concrete Pryout Strength ϕV_{cpp} of Anchors in Shear per ACI 318-11 Appendix D (D.6.3)

For a group of anchors:

$$k_{cpp} = \begin{cases}
2.00 & \text{if } h_{ef} < 2.5 \text{ in} \\
1.00 & \text{if } h_{ef} \geq 2.5 \text{ in} \\
2.00 &
\end{cases}$$

For cast-in, expansion, and undercut anchors, N_{cpp} shall be taken as N_{cpp} determined from eq. (D-4), and for adhesive anchors, N_{cpp} shall be lesser of N_{ag} (D-19) and N_{cbg} (D-4)

$$N_{cbg2} = \frac{A_{Neq} \cdot \psi_{ec,V} \cdot \psi_{ed,N} \cdot \psi_{c,N} \cdot \psi_{spr,N} \cdot N_0}{A_{Nco}}$$

Nominal concrete breakout strength in tension of a group of anchors, note that for shear related pry out $\psi_{ec,V}$ is replaced with $\psi_{ec,V}$

$$N_{cbg2} = 71.746 \text{ kip}$$

$$N_{cpp} := N_{cbg2} = 71.746 \text{ kip}$$

$$V_{cpp} := k_{cpp} \cdot N_{cpp} = 143.492 \text{ kip}$$

$$\phi V_{cpp} := \phi_{conc,Shear} \cdot V_{cpp} = 100.444 \text{ kip}$$

$$V_{UL\text{MAX}} \cdot L_{angle} = 9.8 \text{ kip}$$

CHECK ϕV_{cpp}:

$$\begin{cases}
\text{for } \phi V_{cpp} > V_{UL\text{MAX}} \cdot L_{angle} & \text{"OK"} \\
\text{else} & \text{"CONCRETE PRYOUT"}
\end{cases}$$

CHECK ϕV_{cpp} = "OK"
CHECK 10: Interaction of Tensile and Shear Forces per ACI 318-11 Appendix D (D.7)

Steel Strength in Tension per Anchor (D.5.1)

\[
\phi N_{sa} = 5.4 \text{ kip} \quad N_{ua,i} = 0.891 \text{ kip} \quad \frac{N_{ua,i}}{\phi N_{sa}} = 0.17
\]

Concrete Breakout Strength in Tension (D.5.2)

\[
\phi N_{cbg} = 50.222 \text{ kip} \quad N_{u,\text{MAX}} \cdot L_{\text{angle}} = 9.8 \text{ kip} \quad \frac{N_{u,\text{MAX}} \cdot L_{\text{angle}}}{\phi N_{cbg}} = 0.2
\]

When \(\frac{N_{u,\text{MAX}}}{\phi N_{cbg}} \) MORE THAN 1.0 ANCHOR REINFORCEMENT IN TENSION SHALL BE PROVIDED

Concrete Pullout Strength in Tension per Anchor (D.5.3)

\[
\phi N_{ps} = 6.958 \text{ kip} \quad N_{ua,i} = 0.891 \text{ kip} \quad \frac{N_{ua,i}}{\phi N_{ps}} = 0.13
\]

Steel Strength in Shear per Anchor (D.6.1)

\[
\phi V_{sa} = 2.8 \text{ kip} \quad V_{ua,i} = 0.891 \text{ kip} \quad \frac{V_{ua,i}}{\phi V_{sa}} = 0.32
\]

Concrete Breakout Strength in Shear (D.6.2)

\[
\phi V_{cbg} = 25.416 \text{ kip} \quad V_{u,\text{MAX}} \cdot L_{\text{angle}} = 9.8 \text{ kip} \quad \frac{V_{u,\text{MAX}} \cdot L_{\text{angle}}}{\phi V_{cbg}} = 0.39
\]

When \(\frac{V_{u,\text{MAX}}}{\phi V_{cbg}} \) MORE THAN 1.0 ANCHOR REINFORCEMENT IN SHEAR SHALL BE PROVIDED

Steel Failure due to Spalling Adjusted Lever Arm (HILTI Check)

\[
\phi V_{Ms} = 1.402 \text{ kip} \quad V_{ua,i} = 0.891 \text{ kip} \quad \frac{V_{ua,i}}{\phi V_{Ms}} = 0.64
\]

Concrete Pryout Strength from Shear (D.6.3)

\[
\phi V_{cpg} = 100.444 \text{ kip} \quad V_{u,\text{MAX}} \cdot L_{\text{angle}} = 9.8 \text{ kip} \quad \frac{V_{u,\text{MAX}} \cdot L_{\text{angle}}}{\phi V_{cpg}} = 0.1
\]
governing Utilization in Tension (D.7.2) governing Utilization in Shear (D.7.1)

\[\beta_{N,\text{max}} = \max \left(\frac{N_{ia,i}}{\phi N_{sa}}, \frac{\phi N_{ir,i}}{\phi N_{pi}} \right) = 0.165 \]
\[\beta_{V,\text{max}} = \max \left(\frac{V_{ia,i}}{\phi V_{sa}}, \frac{V_{ir,i}}{\phi V_{pi}}, \frac{V_{H,\text{MAX}} \cdot L_{\text{angle}}}{\phi V_{\text{exp}}} \right) = 0.636 \]

\[\beta_{N,\text{max}} + \beta_{V,\text{max}} = 0.801 \quad \text{(D-42)} \]

\[\text{CHECK Interaction:} \]
\[\text{if } \beta_{V,\text{max}} \leq 0.2 \]
\[\quad \text{if } \beta_{N,\text{max}} \leq 1.0 \]
\[\quad \quad \text{"OK"} \]
\[\quad \text{if } \beta_{N,\text{max}} \leq 0.2 \]
\[\quad \text{if } \beta_{V,\text{max}} \leq 1.0 \]
\[\quad \quad \text{"OK"} \]
\[\text{else} \]
\[\quad \text{if } \beta_{N,\text{max}} + \beta_{V,\text{max}} \leq 1.2 \]
\[\quad \quad \text{"OK"} \]
\[\text{else} \]
\[\quad \text{"ANCHOR DESIGN INSUFFICIENT"} \]

\[\text{CHECK Interaction = "OK"} \]
SECTION 500
CRANE PICK POINT
CONNECTION DESIGN
The rumble strip needs to be crane'd into place, and pick points need to be designed to take the dead load of the box.

The box self-weight conservatively assuming it is one solid concrete mass is:

\[D_L = (12 \text{ ft long}) \left(5.5 \text{ ft wide} \right) \left(9' \text{ thick} + 8' \text{ slab} \right) \left(\frac{12' \text{ ft}}{1 \text{ kips}} \right) \left(\frac{1000 \text{ lbf}}{1 \text{ kips}} \right) \]

\[= 14,025 \text{ lbf} \]

Governing LC for lifting self-weight of box will be ACI 318-11, LC.6

\[= 1.4 D_L = 1.4 \left(14,025 \right) = 19,635 \text{ lbf} \]

Design 4 pick points to take that factored load.

REFERENCES

ACI 318-11

Section A

![Diagram](attachment://diagram.png)

PER PICK POINT

\[P_u = 19,635 \text{ lbs} / 4 = 4,909 \text{ lbs} = 4.91 \text{k} \]

TR: 5/8" A325 bolts, } A_b = 0.307 \text{ in}^2

TENSILE STRENGTH \(f_t = 20.7 \text{k} > P_u \text{ OK, } \frac{F_t}{F_u} = 4.22 \)

SELF-ATTACHMENT ANGLE TO ELIMINATE BOWING ACTION per AISC Section 9.5

\[\theta = \frac{4 f_t b}{N F_u} \]

\[b = \left(\frac{2 f_t}{2} \right) \left(15^\circ - \frac{180^\circ - 5^\circ}{2} \right) = 1.1875^\circ \]

\[\theta = 2 b = 2(1.1875^\circ) = 3^\circ \]

\[F_u = 58 \text{kips for A325 angle} \]
$t_{\text{min}} = \sqrt{\frac{1\,(4.3\,kN)(1.1375)}{0.990(3'')(58\,kN)}} = 0.3810'' \text{ MMIN TO ELIMINATE PRUNING ACTION}$

\text{CHECK L3 x 3 x 7/16 MIN. 7/16'' = 0.4375'' > t_{min}, OK.}

\text{MIN EDGE DISTANCE FOR 5/8'' FOLK = 7/8'' PER TABLE 53.14}

\text{FOR THE 3'' HOLE: LEG, EDGE DISTANCE = 1.5'' > 7/8'' OK.}

\text{CHECK cargar yr. For vertical leg AT 5/8''}

\text{Apparent hole:}

$\phi = 0.25$

$R_n = 1.25 \frac{f_{u}}{f_{y}} \geq 2.4\,d_{t}f_{y}$

$= 1.2(0.65625'')(0.4375'')(58\,kN)$

$= 19.38\,k \geq \text{COMPLIES}$

$\leq 2.4(5/8')(0.4375'')(58\,kN)$

$\leq 38.1\,k$

$\frac{R_n}{\phi} = (0.75)(19.38\,k)$

$= 14.51\,k \geq 4.91\,k \text{ OK!}$

\text{TENSILE YIELDING A CONNECTING ELEMENT}

$\phi = 0.50$

$R_n = \frac{F_{u}}{A_{n}}$

$A_{n} = \text{GROSS AREA} = (3''(7/16'')) = 1.3125 \text{ in}^2$

$\frac{R_n}{\phi} = (0.50)(1.3125 \text{ in}^2) = 42.52\,k \geq P_u = 4.91\,k \text{ OK!}$

\text{TENSILE RUPTURE OF CONNECTING ELEMENTS}

$\phi = 0.90$

$R_n = \frac{F_{u}}{A_{c}}$

$A_{c} = \frac{A_{n} = 0.85 A_{n}}{A_{n}}$

$= \left[3'' \left(\frac{5}{8}\,''\right)\right] = 0.3844 \text{ in}^2$

$F_{u} = \text{TENSILE STRENGTH} = 58\,kN \text{ (A36 ANGLE)}$

$\frac{R_n}{\phi} = (0.90)(58\,kN) = 52.52\,k \geq P_u = 4.91\,k \text{ OK!}$

See full calculations for 1/2'' embed pt stud. Check for AC moment force.
1 Input data

Anchor type and diameter: AWS D1.1 GR. B 1/2
Effective embedment depth: \(h_{ef} = 4.000 \text{ in.} \)

Material: Design method ACI 318-08 / CIP

Proof: \(e_h = 0.000 \text{ in. (no stand-off); } t = 0.500 \text{ in.} \)

Stand-off installation: (Recommended plate thickness: not calculated

Anchor plate: Rectangular plates and bars (ASC); \(L \times W \times T = 3.000 \text{ in. x 0.500 in. x 0.000 in.} \)

Profile: cracked concrete, \(f'_c = 4500 \text{ psi; } h = 8.000 \text{ in.} \)

Base material: tension: condition B, shear: condition B;

Reinforcement: edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F) no

Geometry [in.] & Loading [lb, in.lb]
2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]
Tension force: (+Tension, -Compression)

<table>
<thead>
<tr>
<th>Anchor</th>
<th>Tension Force</th>
<th>Shear force</th>
<th>Shear force x</th>
<th>Shear force y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1227</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1227</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1227</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1227</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

max. concrete compressive strain: - [%]
max. concrete compressive stress: - [psi]
resulting tension force in (x/y)=(0.000/0.000): 4909 [lb]
resulting compression force in (x/y)=(0.000/0.000): 0 [lb]

3 Tension load

<table>
<thead>
<tr>
<th>Steel Strength*</th>
<th>Load N_{la} [lb]</th>
<th>Capacity ϕN_a [lb]</th>
<th>Utilization $\beta_a = \frac{N_{la}}{\phi N_a}$</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pullout Strength*</td>
<td>1227</td>
<td>9555</td>
<td>13</td>
<td>OK</td>
</tr>
<tr>
<td>Concrete Breakout Strength**</td>
<td>4909</td>
<td>23291</td>
<td>22</td>
<td>OK</td>
</tr>
</tbody>
</table>

Concrete Side-Face Blowout, direction **
N/A

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

$N_{la} = A_{la}f_{la}$
$\phi N_a \geq N_{la}$

ACI 318-08 Eq. (D-3)
ACI 318-08 Eq. (D-1)

Variables

A_{la} [in2] f_{la} [psi]
0.20 65000

Calculations

N_{la} [lb]
12740

Results

N_{la} [lb] ϕN_a [lb] N_{la} [lb]
12740 9555 1227

Input data and results must be checked for agreement with the existing conditions and for plausibility.

PROFIS Anchor (c) 2003-2009 Hilli AG, FL-9494 Schaan. Hilli is a registered Trademark of Hilli AG, Schaan.
3.2 Pullout Strength

\[N_{pl} = \psi \cdot \phi \cdot N_p \]
\[N_p = 8 \cdot A_{bar} \cdot f_c \]
\[\psi_{pl} \geq \psi_{pl,min} \]

Variables

\[\psi_{pl} \]
\[A_{bar} \text{ [in.}^2\text{]} \]
\[f_c \text{ [psi]} \]

\[1.000 \quad 0.59 \quad 4500 \]

Calculations

\[N_p \text{ [lb]} \]

\[21204 \]

Results

\[N_{pl} \text{ [lb]} \]
\[\phi_{concrete} \]
\[N_{pl} \text{ [lb]} \]
\[N_{ua} \text{ [lb]} \]

\[21204 \quad 0.700 \quad 14043 \quad 1227 \]

3.3 Concrete Breakout Strength

\[N_{cb,c} = \left(\frac{A_{cb,c}}{A_{ud,0}} \right) \psi_{ud,N} \psi_{ud,N} \psi_{ud,N} \psi_{ud,N} \psi_{ud,N} N_p \]
\[\phi \cdot N_{cb,c} \geq N_{ua} \]
\[A_{ud,0} = 9 \cdot \frac{N_p}{f_c} \]
\[\psi_{ud,N} = 1 + \left(\frac{1}{H_u} \right) \]
\[\psi_{ud,N} = 0.7 + 0.3 \cdot \frac{c_{cm,1.5H_u}}{c_{cm}} \]
\[\psi_{ud,N} = \text{MAX} \left(\frac{c_{cm,1.5H_u}}{c_{cm}} \right) \]

Variables

\[h_u \text{ [in.]} \]
\[e_{cm} \text{ [in.]} \]
\[e_{cm2} \text{ [in.]} \]
\[c_{cm,1.5H_u} \text{ [in.]} \]
\[\psi_{uc,N} \]

\[4.000 \quad 0.000 \quad 0.000 \quad \infty \quad 1.000 \]

\[c_{cm} \text{ [in.]} \]
\[k_c \]
\[\lambda \]
\[f_c \text{ [psi]} \]

\[0.000 \quad 24 \quad 1 \quad 4500 \]

Calculations

\[A_{ud,0} \text{ [in.}^2\text{]} \]
\[A_{ud,0} \text{ [in.}^2\text{]} \]
\[\psi_{ud,N} \]
\[\psi_{ud,N} \]
\[\psi_{ud,N} \]
\[\psi_{ud,N} \]

\[372.00 \]
\[144.00 \]
\[1.000 \]
\[1.000 \]
\[1.000 \]
\[12880 \]

Results

\[N_{cb,c} \text{ [lb]} \]
\[\phi_{concrete} \]
\[N_{cb,c} \text{ [lb]} \]
\[N_{ua} \text{ [lb]} \]

\[33273 \quad 0.700 \quad 23291 \quad 4009 \]
4 Shear load

<table>
<thead>
<tr>
<th></th>
<th>Load V_{ad} [lb]</th>
<th>Capacity ϕV_n [lb]</th>
<th>Utilization $\beta = \frac{V_{ad}}{\phi V_n}$</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Strength*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Steel failure (with lever arm)*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pryout Strength*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Concrete edge failure in direction **</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* anchor having the highest loading **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!

- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.

- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!
6 Installation data

Anchor plate, steel:
Profile: Rectangular plates and bars (AISC); 3.000 x 0.500 x 0.000 in.
Hole diameter in the fixture: \(d_1 = 0.563 \) in.
Plate thickness (input): 0.500 in.
Recommended plate thickness: not calculated
Drilling method: -
Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: AWS D1.1 GR. B 1/2
Installation torque:
Hole diameter in the base material: - in.
Hole depth in the base material: 4.000 in.
Minimum thickness of the base material: 4.813 in.

Coordinates Anchor in.

<table>
<thead>
<tr>
<th>Anchor</th>
<th>(x)</th>
<th>(y)</th>
<th>(c_x)</th>
<th>(c_{xx})</th>
<th>(c_y)</th>
<th>(c_{yy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.750</td>
<td>-8.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1.750</td>
<td>-6.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-1.750</td>
<td>6.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1.750</td>
<td>6.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Input data and results must be checked for agreement with the existing conditions and for plausibility!
7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.
1 Input data

Anchor type and diameter:
AWS D1.1 GR. B 1/2

Effective embedment depth:
h_{ef} = 4.000 in.

Material:
Design method ACI 318-08 / CIP

Proof:
\(e_b = 0.000 \) in. (no stand-off); \(t = 0.500 \) in.

Stand-off installation:
\(e_b = 0.000 \) in. (no stand-off); \(t = 0.500 \) in.

Anchor plate:
l_x \times l_y \times t = 5.500 \text{ in.} \times 14.000 \text{ in.} \times 0.500 \text{ in.}; (Recommended plate thickness: not calculated

Profile:
Rectangular plates and bars (AISC); (L \times W \times T) = 3.000 \text{ in.} \times 0.500 \text{ in.} \times 0.000 \text{ in.}

Base material:
Cracked concrete, \(f'_c = 4500 \) psi; \(h = 8.000 \) in.

Reinforcement:
tension: condition B, shear: condition B;
edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F)
no

Geometry [in.] & Loading [lb, in.lb]
2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

<table>
<thead>
<tr>
<th>Anchor</th>
<th>Tension force</th>
<th>Shear force x</th>
<th>Shear force y</th>
<th>Shear force x Tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1227</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1227</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1227</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1227</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

max. concrete compressive strain: - [%]
max. concrete compressive stress: - [psi]
resulting tension force in (x/y)=(0.000/0.000): 4909 [lb]
resulting compression force in (x/y)=(0.000/0.000): 0 [lb]

3 Tension load

<table>
<thead>
<tr>
<th>Steel Strength*</th>
<th>Load Nsa [lb]</th>
<th>Capacity φ Ns [lb]</th>
<th>Utilization βs = Nsa/φ Ns</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pullout Strength*</td>
<td>1227</td>
<td>9555</td>
<td>13</td>
<td>OK</td>
</tr>
<tr>
<td>Concrete Breakout Strength**</td>
<td>4909</td>
<td>23291</td>
<td>22</td>
<td>OK</td>
</tr>
<tr>
<td>Concrete Side-Face Blowout, direction **</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* anchor having the highest loading ** anchor group (anchors in tension)

3.1 Steel Strength

\[Nsa = A_{se,N} f_{uta} \]

ACI 318-08 Eq. (D-3)

\[\phi Nsa \geq Nsa \]

ACI 318-08 Eq. (D-1)

Variables

<table>
<thead>
<tr>
<th>A_{se,N} [in.²]</th>
<th>f_{uta} [psi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>65000</td>
</tr>
</tbody>
</table>

Calculations

\[Nsa [lb] \]

12740

Results

<table>
<thead>
<tr>
<th>Nsa [lb]</th>
<th>(\phi) steel</th>
<th>(\phi Nsa) [lb]</th>
<th>Nsa [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12740</td>
<td>0.750</td>
<td>9555</td>
<td>1227</td>
</tr>
</tbody>
</table>
3.2 Pullout Strength

\[N_{NP} = \psi_{c,p} N_p \]
\[N_p = 8 \bar{A}_{rg} f' \]
\[\phi N_{NP} \geq N_{ua} \]

Variables

\[
\begin{align*}
\psi_{c,p} & = 1.000 \\
\bar{A}_{rg} & = 0.59 \\
f' & = 4500
\end{align*}
\]

Calculations

\[
N_p \text{ [lb]} = 21204
\]

Results

\[
\begin{align*}
N_{NP} \text{ [lb]} & = 21204 \\
\phi \text{ concrete} & = 0.700 \\
N_{ua} \text{ [lb]} & = 1227
\end{align*}
\]

3.3 Concrete Breakout Strength

\[N_{cbg} = \left(\frac{A_{nc}}{A_{nc0}} \right) \psi_{c,N} \psi_{e1,N} \psi_{e2,N} \psi_{cp,N} N \]

\[
\phi N_{cbg} \geq N_{ua}
\]

\[A_{nc0} = 9 h_{ct}^2 \]

\[
\psi_{c,N} = \frac{1}{1 + \frac{2 \theta_{ct}}{3 h_{ct}}}
\]

\[
\psi_{e1,N} = 0.7 + 0.3 \left(\frac{\epsilon_{c1,N}}{1.5 h_{ct}} \right)
\]

\[
\psi_{e2,N} = \max \left(\frac{\epsilon_{c2,N}}{\epsilon_{c,0.02,N}} \right)
\]

\[N_b = k_c \lambda \sqrt{f' h_{ct}^2} \]

Variables

\[
\begin{align*}
h_{ct} & = 4.000 \\
\epsilon_{c1,N} & = 0.000 \\
\epsilon_{c2,N} & = 0.000 \\
\epsilon_{c,0.02,N} & = \infty \\
\psi_{c,N} & = 1.000
\end{align*}
\]

Calculations

\[
\begin{align*}
A_{nc} \text{ [in.}^2\text{]} & = 372.00 \\
A_{nc0} \text{ [in.}^2\text{]} & = 144.00 \\
\psi_{c1,N} & = 1.000 \\
\psi_{e2,N} & = 1.000 \\
\psi_{ad,N} & = 1.000 \\
\psi_{ep,N} & = 1.000 \\
N_b \text{ [lb]} & = 12880
\end{align*}
\]

Results

\[
\begin{align*}
N_{cbg} \text{ [lb]} & = 33273 \\
\phi \text{ concrete} & = 0.700 \\
N_{cbg} \text{ [lb]} & = 23291 \\
N_{ua} \text{ [lb]} & = 4909
\end{align*}
\]
4 Shear load

<table>
<thead>
<tr>
<th>Steel Strength*</th>
<th>Load V_{na} [lb]</th>
<th>Capacity ϕV_n [lb]</th>
<th>Utilization $\beta_V = V_{na}/\phi V_n$</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel failure (with lever arm)*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pryout Strength*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Concrete edge failure in direction **</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* anchor having the highest loading **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!

- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.

- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!
6 Installation data

Anchor plate, steel: -
Profile: Rectangular plates and bars (AISC); 3.000 x 0.500 x 0.000 in.
Hole diameter in the fixture: \(d_f = 0.563 \) in.
Plate thickness (input): 0.500 in.
Recommended plate thickness: not calculated
Drilling method: -
Cleaning: No cleaning of the drilled hole is required

Coordinates Anchor in.

<table>
<thead>
<tr>
<th>Anchor</th>
<th>x</th>
<th>y</th>
<th>(c_x)</th>
<th>(c_y)</th>
<th>(c_\gamma)</th>
<th>(c_\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.750</td>
<td>-6.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1.750</td>
<td>-6.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-1.750</td>
<td>6.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1.750</td>
<td>6.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Anchor type and diameter: AWS D1.1 GR. B 1/2
Installation torque: -
Hole diameter in the base material: - in.
Hole depth in the base material: 4.000 in.
Minimum thickness of the base material: 4.813 in.

Input data and results must be checked for agreement with the existing conditions and for plausibility!

PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan
Hilti is a registered Trademark of Hilti AG, Schaan
7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.
APPENDIX B
Demand-Responsive Rumble Strip (DRRS) Structural Analysis Overview for the Third Design
Demand-Responsive Rumble Strip (DRRS) Structural Analysis Overview

The proposed design is composed of five rumble strips, Figure 1. The rumble strips will be typically at roadway level. If there is a need to slow passing vehicles down, the rumble strips will be lowered to a pre-set level.

Each rumble strip is activated by three hydraulic actuators, Figure 2. These hydraulic actuators are single-acting units. While pressure moves, and maintains, the rumble street up to the roadway level, an internal spring, placed inside each hydraulic actuator, pushes it down to the desired depth (0.5” below the roadway).

Figure 1. Demand-Responsive Rumble Strip System (End of the Box Is Hidden and the Top Channel of the Left-most Rumble Strip Unit Is Rendered Transparent to Ease Viewing)
Figure 2 (a). Rumble Strip. The Strip is activated using Three Hydraulic Cylinders. It Is Supported by Six Columns when It Is at the Lowest Position
Figure 2 (b). Side and Top Views of a Rumble Strip.
Figure 2 (c). Front View of the Rumble Strip.

The rumble strip units are placed within a steel box, Figure 3, which is attached to the roadway using studs and epoxy. The rumble strips are separated by spacer blocks. The two spacer blocks on the left side of Figure 3 have 4.5 inch pipe to allow routing of the hydraulic units hoses. Each block is manufactured from steel sections in the shape of open trough to allow pouring concrete into it. Concrete will add stability to the system and reduce the possibility of slippage.
Figure 3. Demand-Responsive Rumble Strip System Box
Structural Analysis

The following is a structural analysis of the DRRS system under the load induced by a fully-loaded truck that is braking over a rumble strip system. For simplicity, a rumble strip with the surrounding separating blocks are considered, Figure 4. The cavities of the support blocks are filled with concrete.

Figure 4. Demand-Responsive Rumble Strip with Four Spacer Blocks
Truck Loading

The weights and spacing of axles and wheels for the design truck shall be as specified in Figure 5. A dynamic load allowance shall be considered as Dynamic load allowance (IM). The spacing between the two 32.0 kip axles shall be varied between 14.0 ft and 30.0 ft. The transverse spacing of tires is as 6.0 ft.

Figure 5. Characteristics of the Loading Truck [20]
Tire Contact Area

The tire contact area of a wheel consisting of one or two tires shall be assumed to be a 20" x 10" rectangle. The twenty-inch side of the contact area is parallel to the axle. It is also assumed that:

- The tire pressure is assumed to be uniformly distributed over the continuous contact area.
- On interrupted surfaces, the tire pressure is uniformly distributed over the actual contact area within the footprint with the pressure increased in the ratio of the specified to actual contact areas [20].
Case Study #1: Load is shared by the Rumble Strip Unit and the Support Blocks

When the strips are at the roadway level, the most severe loading case may happen when a truck, as described above, brakes over the strip. In this case, the strip and the neighboring spacer blocks will carry the load of the axles in addition to braking load. Tire contact area is shown in Figure 6. This scenario indicates that the tire pressure is divided between the rumble strip unit and the two supporting blocks.

![Figure 6. Tire Contact Area of the Case Study](image)

In this case, the normal pressure each tire is applying is equal to:

\[\text{Pressure} = \frac{2 \times (10 \times 20)}{120} \approx 80 \text{ psi} \]

A load factor of 1.33 is used, increasing the normal pressure to, 106.4 psi.

A second load is generated in the tangential direction (parallel to the surface of the roadway) due to braking. According to Section 3.6.4 of AASHTO 2012 LRFD Bridge Design Specifications [20], the braking force shall be assumed as 25 percent of the axle weights of the design truck. Therefore, tangential pressure due to the stopping of the truck is 100 psi.

Braking load is verified by calculating the force due to decelerating the vehicle.

![Figure 7. Comparison of Stopping Distances at 65 mph](image)
Figure 7 shows that stopping distance for a truck is, $d = 525 \text{ ft}$. Assuming that the deceleration is constant, it can be calculated for the case when the velocity of the truck before the start of the deceleration is, $V_0 = 65 \text{ mph}$. Using principles of kinematics,

\[T = -\frac{V_0}{a} \]

\[\Delta d = \frac{aT^2}{2} + V_0T \]

where T is the stopping time

a is the deceleration

Merging the two equations,

\[\Delta d = \frac{aT^2}{2} + V_0T = \frac{a\left(\frac{-V_0}{a}\right)^2}{2} + V_0\left(\frac{-V_0}{a}\right) = -\frac{V_0^2}{2a} \]

Rearranging the above equation,

\[a = -\frac{V_0^2}{2\Delta d} = -\frac{(65 \text{ mph})^2}{2 \times 525 \text{ ft}} = -8.65 \text{ ft/s}^2 \]

The associated force is,

\[F = ma = 8000 \text{ lb} \times \frac{8.65 \text{ ft/s}^2}{32.17 \text{ ft/s}^2} = 21508 \text{ lb} \]

These results are consistent with [20].
Finite Element Analysis of the Rumble Strip System

For analysis purpose, only the middle rumble strip and its surrounding spacer blocks are placed inside the box, Figure 8. This can be considered as a conservative approach as the other spacer blocks and rumble strips will add stability to the system.

Figure 8. Demand-Responsive Rumble Strip with Four Spacer Blocks
Study Properties

<table>
<thead>
<tr>
<th>Study name</th>
<th>Truck Loading plus Braking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis type</td>
<td>Static</td>
</tr>
<tr>
<td>Mesh type</td>
<td>Solid Mesh</td>
</tr>
<tr>
<td>Thermal Effect:</td>
<td>On</td>
</tr>
<tr>
<td>Thermal option</td>
<td>Include temperature loads</td>
</tr>
<tr>
<td>Zero strain temperature</td>
<td>298 Kelvin</td>
</tr>
<tr>
<td>Include fluid pressure effects from SOLIDWORKS Flow Simulation</td>
<td>Off</td>
</tr>
<tr>
<td>Solver type</td>
<td>Direct sparse solver</td>
</tr>
<tr>
<td>Inplane Effect:</td>
<td>Off</td>
</tr>
<tr>
<td>Soft Spring:</td>
<td>Off</td>
</tr>
<tr>
<td>Inertial Relief:</td>
<td>Off</td>
</tr>
<tr>
<td>Incompatible bonding options</td>
<td>Automatic</td>
</tr>
<tr>
<td>Large displacement</td>
<td>Off</td>
</tr>
<tr>
<td>Compute free body forces</td>
<td>On</td>
</tr>
<tr>
<td>Friction</td>
<td>Off</td>
</tr>
<tr>
<td>Use Adaptive Method:</td>
<td>Off</td>
</tr>
<tr>
<td>Result folder</td>
<td>SOLIDWORKS document (H:\My Drive\Rumble Strips\Design 2 (1)\rumble strip v2\V2.1 FEA)</td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>Unit system:</th>
<th>English (IPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length/Displacement</td>
<td>in</td>
</tr>
<tr>
<td>Temperature</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>Angular velocity</td>
<td>Hertz</td>
</tr>
<tr>
<td>Pressure/Stress</td>
<td>psi</td>
</tr>
</tbody>
</table>

Structural Analysis of Demand-Responsive Rumble Strip System
<table>
<thead>
<tr>
<th>Model Reference</th>
<th>Properties</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Plain Carbon Steel
 Model type: Linear Elastic
 Isotropic
 Default failure criterion: Max von Mises Stress
 Yield strength: 31994.5 psi
 Tensile strength: 57989.9 psi
 Elastic modulus: 3.04579e+007 psi
 Poisson's ratio: 0.28
 Mass density: 0.281793 lb/in^3
 Shear modulus: 1.1458e+007 psi
 Thermal expansion coefficient: 7.22222e-006 /Fahrenheit</td>
<td>All components are assumed to be made of Plain Carbon Steel unless specified otherwise</td>
<td></td>
</tr>
<tr>
<td>Name: PC
 Model type: Linear Elastic
 Isotropic
 Default failure criterion: Max von Mises Stress
 Tensile strength: 5801.51 psi
 Elastic modulus: 349541 psi
 Poisson's ratio: 0.3897
 Mass density: 0.0386562 lb/in^3
 Shear modulus: 125052 psi</td>
<td>Plastic strip spacers are attached to the space block to reduce friction during the motion of the rumble strip</td>
<td></td>
</tr>
<tr>
<td>Name: Concrete 1 [22]
 Model type: Linear Elastic
 Isotropic
 Default failure criterion:
 Tensile strength: 500 psi
 Compressive strength: 6000 psi
 Elastic modulus: 4e+006 psi
 Poisson's ratio: 0.22
 Mass density: 0.055 lb/in^3
 Shear modulus: 2.4e+006 psi
 Thermal expansion coefficient: 5e-006 /Fahrenheit</td>
<td>As mentioned earlier, concrete filling is used inside the support blocks</td>
<td></td>
</tr>
</tbody>
</table>
Boundary Conditions
The bottom and the side of the box in addition to the sides of the spacer blocks are fully restricted to simulate the support the blocks receive from the roadway and the box respectively, Figure 9.

Figure 9. Boundary Conditions of the Case Study
Applied Loads

Loads are applied to the upper surface of the rumble strips and support blocks as specified above and shown in Figure 9.

Contact Information

All parts that will be welded or bolted are bonded in the model using compatible meshes.
Mesh
Generating the mesh was challenging as the thickness The table below lists the mesh information. Figure 11 shows the overall mesh while Figures 12 and 13 show detailed views of the mesh used to describe the rumble strip top channel, actuator, spacer blocks, and the box bottom.

<table>
<thead>
<tr>
<th>Mesh type</th>
<th>Solid Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesher Used:</td>
<td>Standard mesh</td>
</tr>
<tr>
<td>Automatic Transition:</td>
<td>Off</td>
</tr>
<tr>
<td>Include Mesh Auto Loops:</td>
<td>Off</td>
</tr>
<tr>
<td>Jacobian points</td>
<td>4 Points</td>
</tr>
<tr>
<td>Element Size</td>
<td>1.49125 in</td>
</tr>
<tr>
<td>Tolerance</td>
<td>0.0745625 in</td>
</tr>
<tr>
<td>Mesh Quality Plot</td>
<td>High</td>
</tr>
<tr>
<td>Total Number of Elements</td>
<td>194765</td>
</tr>
</tbody>
</table>

Figure 11. Finite Element Mesh Used to Describe the Problem
Figure 12. Mesh Detail near the Center of the Rumble Strip
Figure 13. Mesh Detail near the end of the Rumble Strip
Study Results

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress1</td>
<td>VON: von Mises Stress</td>
<td>0.000e+000psi</td>
<td>5.144e+003psi</td>
</tr>
</tbody>
</table>

Structural Analysis of Demand-Responsive Rumble Strip System
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement1</td>
<td>URES: Resultant Displacement</td>
<td>0.000e+000in</td>
<td>3.346e-003in</td>
</tr>
</tbody>
</table>

Structural Analysis of Demand-Responsive Rumble Strip System
Conclusions

As the results show, the loads induce minimum deformation that occurs in the unsupported portion of the rumble strip upper channel.

The maximum von Mises stress recorded is 3784 psi in the rumble strips. Concrete experiences compressive stresses in the order of 300 psi.

It is reasonable to assume that the failure will be due to fatigue loading as the rumble strip will be subjected to repeated loads. The approach suggested by [23] is followed in this section. The process is started by calculating the endurance limit of the steel using the following formula,

\[
(0.5)(58000)(1)(0.8)(0.77)(1)(0.753) = 13450
\]

where,

- \(Su \) Ultimate strength
- \(CL \) Loading factor
- \(CG \) Gradient factor
- \(Cs \) Surface factor
- \(CT \) Temperature factor
- \(CR \) Reliability factor, which is chosen as 99.9%

In this case study, the rumble strips will experience load that varies from zero to maximum. Therefore, the amplitude and mean of stresses will be equal to each other or,

\[
\sigma_m = \sigma_a = \frac{5144}{2} = 2572 \text{ psi}
\]

Using Goodman line, the factor of safety can be calculated as:

\[
f_s = \frac{(S_n)(S_u)}{(S_o + S_u)} / \sigma_a = \frac{10918}{2572} = 4.25
\]

This factor of safety may be adequate to meet other unexpected loads the system may experience. The highest stress is below the 15% Dynamic Load Allowance suggested by Fatigue and Fracture Limit State [20].
APPENDIX C

Work Plan for the Testing of Demand Responsive Transverse Rumble Strips at the University of Nevada Las Vegas
Introduction

The Nevada Department of Transportation (NDOT) through its Stewardship and Oversight Agreement [24] with Federal Highway Administration (FHWA) has accepted the responsibility of approving experimental products for facilities located within their right-of-way. The details can be found in appendix A of the agreement, PROJECT ACTION RESPONSIBILITY MATRIX; Approve the use of proprietary products, processes. This work plan has been prepared in accordance with FHWA’s experimental work plans [25]. As such, this document serves as the proposed Work Plan for the testing of Demand Responsive Transverse Rumble Strips (DRTRS) on Harmon Avenue in front of the Lied library at the University of Nevada Las Vegas. This location was chosen because it currently provides opportunities for traffic safety improvement. The location was discussed UNLV’s Planning and Construction.

Description of the Experimental Feature

Figure 1 illustrates the proposed DRTRS in the field. The device is installed upstream of crossings or unsafe areas at a Stopping Sight Distance (SSD) which is the length required for vehicles to safely stop. The rumble effect is created by a set of rumble units illustrated in Figure 2. These units include three hydraulic actuators to lower or raise C Channel beams. Figure 3 presents a zoomed view of the most important components of the rumble strip units including a hydraulic actuator, the C Channel beam, a support column, and a base plate. The rumble units are separated by spacer sections made of structural steel angles and filled with concrete to provide stiffness and stability. Rumble strips and spacer sections are bolted to a steel box frame, which will be attached to the road using studs and epoxy. Rumble strips and spacer units can be disassembled separately without the need to remove the box frame. Hydraulic lines connect the actuator to a hydraulic pump and control unit that will be placed in an appropriate box on the side of the road.

The default position of the rumble strips is to have the upper surface of the C Channels flush with the road, spacer units, and the upper edges of the box frame. The rumble strips can be activated by either pedestrian push buttons, traffic signal controller, and/or vehicle/pedestrian detection systems. When a signal is sent to the system, the hydraulic actuators will lower the rumble strips C Channels; the resulting recesses create the transverse rumble strip effect.

The proposed modular design is compact, less than 6-inches deep, allowing to place it within asphalt without the need for added support or preparation. The rumble units are four inches wide. They are spaced eight inches from each other and are transverse to the flow of vehicular traffic. The C Channel beams create a rumble of 0.5 inches deep. These dimensions were chosen based on the existing literature about conventional transverse rumble strips. Different jurisdictions use different dimensions. The ones chosen for the DRTRS are consistent with most jurisdictions. However, the spacing and depth of the DRTRS can be changed relatively easy. The design is robust with relatively few components. It was developed to maintain functionality under various conditions including severe temperature variations, rain, snow, and dirt. The use of hydraulic power enhances safety because no electric lines will be used. The DRTRS can be quickly installed and uninstalled. Support columns are added to carry the load caused by the tires of the passing vehicles when the strips are at the recessed position.
Key components of the DRTRS include:

8) C-channel beams.

9) Hydraulic actuators that lowers the C Channel beam to create the rumble effect. These actuators are spring-loaded, which means that hydraulic power will be needed only to lower the strips.

10) A controller unit that allows various modes of input to the rumble strips.

General Operations Description

At the default position, the C Channels of the rumble strip units are flush with the top of the steel box frame and roadway. To lower the rumble units, the hydraulic actuators retract, lowering the C Channel beams. To return to the default position, the hydraulic pressure is released, allowing springs within the hydraulic actuators to push the C Channel beams up causing them to become
flush with the top of the box and roadway. The DRTRS can be activated through communication with pedestrians, traffic signal controllers, and/or detection systems.

![Figure 21: A Unit Box Beam and Roller Assembly of the Demand-Responsive Rumble Strips](image)

![Figure 22: A Zoomed View Showing one of the hydraulic units and support of the Demand-Responsive Rumble Strips](image)

Experimental Feature Objectives or Anticipated Benefits of the Product

The DRTRS would be installed on travel lanes upstream of locations with traffic safety concerns or potential for safety improvements to alert drivers/vehicles about the presence of downstream conflict. By making the mechanism active only when needed, the proposed design
avoids the problem of getting drivers accustomed to the rumble strip effects while minimizing noise and vehicle deterioration as compared to permanent rumble strips. Hence, drivers’ attention will be regained to address distractions, low visibility, or fatigue. The anticipated benefits of the DRTRS include reduction of the number of downstream crashes.

The DRTRS provides redundancy in the case of autonomous vehicles to minimize the likelihood of crashes due to failures and/or malfunction in the detection or navigation systems. That is, the DRTRS provides an alternative communication mechanism to alert the autonomous vehicle to slow down or stop just as it does with human drivers. The DRTRS has the potential to address at least one of the six research priorities in the Fixing America’s Surface Transportation (FAST) Act; Promoting Safety.

Data to be Collected

Testing of the DRTRS will be performed using three sequential sets of experiments where different measures will be made as follows. The first two sets of experiments are currently being performed at UNLV. The third set of experiments are part of this proposed Work Plan:

1. **Laboratory testing**
The objective of this testing is to evaluate performance and reliability. Measurements to be made include:
 i. Power required to activate each component unit and the entire system
 ii. Response time
 iii. Rumble position error
 iv. Drainage capacity provided by the system
 v. Percentage of water that enters the assembly relative to the flow of water on top of the concrete box and top plate

2. **Off-the-road field testing**
This testing is currently conducted at a UNLV gated lot next to the William D. Taylor All. UNLV vehicles including a truck owned by the Civil Engineering Department are being used. This testing is focused on durability, operational reliability, noise and vibration produced by the DRTRS. Measurements being made include:
 i. Effect of traffic on the structural integrity of the DRTRS; this can be inspecting the unit regularly.
 ii. Effect of traffic on the mechanical and electrical components of the DRTRS; this can be inspecting the unit regularly.
 iii. Effect of sediments and small particles that can go inside the unit box beam and roller assembly without affecting operations; this can be measured by volume and by inspecting components regularly.
 iv. Noise generated by the DRTRS inside the vehicles using smartphones.
 v. Noise generated by the DRTRS on the road. This will be measured using smartphones.
 vi. Vibration generated by the DRTRS inside the vehicles using accelerometers.
 vi. Deflection generated by the design axle.

3. **On-the-road field testing**
This is the field test on Harmon in front of the Lied library. The following measures will be made for two months before and after installation of the DRTRS:
i. Speed of traffic measure using a video tracking system.
ii. Deceleration rates measured using a video tracking system.
iii. Noise generated by the DRTRS inside some vehicles operated by the research team. This noise can be measured using smartphones.
iv. Noise generated by the DRTRS on the road using smartphones.
v. Number of conflicts (close calls) and crashes measured using surrogate statistics such as time to collision.
vi. Volumes for vehicles, pedestrians and bicyclists measure using video counting systems.

We will continue to monitor all variables listed in the off-the-road testing stage.

Although the main objective of the DRTRS is to address driving with distractions, fatigue, low visibility, and/or under the influence of stimulants, it is very difficult and expensive to measure these events. Hence, to the extent possible, we will estimate these events and associated DRTRS effect using the measurements listed above. In addition, a survey questionnaire will be designed and used to interview the community and users about the DRTRS and its effects on distracted driving.

The data collected before and after the DRTRS installation will be analyzed using appropriate statistical methods to extract as much meaningful conclusions and insights as possible. Various hypotheses will be tested to assess DRTRS effectiveness. For example, our current design enables setting the depth of the rumbles at two different levels. One hypothesis is that different facilities with different geometric and operational characteristics may require a different configuration of the rumble strips to maximize effectiveness. Similarly, the DRTRS enables turn on and off various strips to increase or decrease the spacing between rumbles. These capabilities provide a large number of alternative configurations that can be tested and used in the field according to specific site characteristics. Various configurations will be setup and tested to collect as much data as possible. Systematic analysis of all these data requires special purpose statistical tools such as data count and zero inflated models to seek interdependencies among potential dependent and explanatory variables. In addition, no-parametric models will be estimated to study corrections among the various data items collected during the field testing and to determine which configuration of DRTRS provides the best benefits for different site conditions and characteristics. For example, the analysis could reveal that for the same site a different configuration is required during day and night time conditions.

Characteristics to be Evaluated

The primary objective of the DRTRS is to reduce the number of crashes as a consequence of high speeds, distracted driving, low visibility, fatigue, and/or driving under the influence of substances. Considering that crashes are rare events, the effectiveness of the DRTRS will be evaluated by comparing the before and after deceleration rates and time to collision estimates.
Time Schedules

The following table provides the list of tasks and the corresponding schedule.

<table>
<thead>
<tr>
<th>Name</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed redesign</td>
<td></td>
</tr>
<tr>
<td>Prototyping</td>
<td></td>
</tr>
<tr>
<td>Initial Testing</td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td></td>
</tr>
<tr>
<td>Field testing at UNLV</td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
</tr>
</tbody>
</table>

Reporting Requirements

Written reports will be submitted monthly including:

1. Details of tasks performed
2. Details of data collected
3. Analysis of the data
4. Problems or challenges faced
5. Plans for the following months

Control Sections

Considering that the focus and objective of the proposed feature is to reduce the number of crashes at sites with safety concerns or potential for safety improvements, we propose to use a “before and after” approach to test the effectiveness of the DRTRS and to collect the proposed measurements. Hence, the control sections will be the same locations where the DRTRS will be installed. The same type of data and measures will be collected at these sections three months before and after the DRTRS are installed.

Evaluations to be Conducted

The DRTRS will be evaluated using deceleration rates and time to collision estimates measured before and after the device is installed. In addition, the durability and maintenance required will be evaluated using strain gauges and volume of debris accumulated over time. A log of system failures or malfunctioning will be created.
Location of Proposed Installation
The proposed location for field testing is on Harmon eastbound in front of the Lied library at UNLV. The picture below depicts the approximated location of the DRTRS which will be installed upstream of a crosswalk at a distance sufficient for vehicles to slow down and stop before the crosswalk. This distance is known as Stopping Sight Distance and there is an engineering equation available in the literature for its calculation.

<table>
<thead>
<tr>
<th>1) Rumble device</th>
<th>2) Control Cabinet (we need power here)</th>
<th>3) Crosswalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Camera (we need power here – three 110 outlets)</td>
<td>5) Poles with push button</td>
<td>6) Pedestrian crossing signs</td>
</tr>
</tbody>
</table>

Figure 4 Proposed location for field testing the third design at UNLV

Location of Control Section
As indicated above, we propose to use a “before and after” approach. Hence, the control section is the test site with data collected three months before the DRTRS are installed.

Creation and/or Modification of Specifications to Allow for a Proprietary Product
The proposed feature, DRTRS, is designed and built by UNLV. The DRTRS was designed and built to enable its installation and operation using off-the-shelf materials and components.

System Monitoring and Evaluation
Right after installing the DRTRS on a site, team members will observe the performance of the device as well as the effects on traffic. Any detected issues will be addressed until all of them are resolved, if any. The team will leave the site only after a few hours of normal operations are observed.

Data will be collected continuously using video. These data will be analyzed weekly to detect any potential issue and resolve it as well as to access the benefits of the DRTRS. Issues can be detected using the video stream as well as measurements from the sensors installed to collect data.

We do not anticipate that the DRTRS will require onsite inspection and maintenance more than once a year. However, during this proposed field test, each DRTRS will be inspected weekly to observe the amount of collected sediments and small particles. If the volume of debris is significant, they will be measured and removed to prevent malfunctioning. Data about the volume
of sediments and small particles that accumulate over time can be used to estimate inspection and maintenance requirements.

Report of Results Following the Requirements Set in the Approved Work Plan

A final report will be prepared including analysis and results as well as actual costs of the DRTRS, plus installation. After review and approval by NDOT’s Chief Road Design Engineer and manager of facilities where the DRTRS are tested, two copies of this report will be submitted to the Federal Highway Administration (FHWA), Division Office. The FHWA Division Office should forward a copy to the National Partnership Program Manager.

Buy America Requirement

The DRTRS are built by the UNLV using American steel. Copies of the certifications provided by the suppliers will be accessible.
APPENDIX D
Survey Questionnaire
TITLE OF STUDY: Redesign, prototyping and field testing of Demand Responsive Rumble Strips for Advanced and Safe Mobility

INVESTIGATOR(S): Alexander Paz, Mohamed Trabia, and Brendan Morris

Purpose of the Study
The purpose of this research is to evaluate people’s opinions and attitudes toward a demand-responsive transverse rumble strip (DRTRS) device designed to alert drivers in advance about a potential collision/crash. The device will be installed on Harmon in front of the Lied library at UNLV. Drivers and pedestrians at UNLV will be asked to complete the attached survey questionnaire before and after the deployment of the DRTRS.

Procedures
If you volunteer to participate in this study, you will be asked questions about your socioeconomic characteristics, driving and transportation habits, and your option and experience regarding the DRTRS.

Cost /Compensation
You will not be compensated for your time. This survey will take approximately 10 minutes to complete.

Contact Information
If you have questions or concerns about this study you can contact Dr. Alexander Paz at apaz@unlv.edu. For questions regarding the rights of research subjects, any complaints or comments regarding the manner in which the study is being conducted you may contact the UNLV Office of Research Integrity – Human Subjects at 702-895-2794, toll free at 877-895-2794, or via email at IRB@unlv.edu.

Voluntary Participation
Your participation in this study is voluntary. You may refuse to participate in this study or in any part of this study. You may withdraw at any time without penalty or prejudice to your relations with the university. Your responses will be kept confidential and cannot be linked back to you personally.

Participant Consent:
By beginning the survey, you acknowledge that you have read this information and agree to participate in this research, with the knowledge that you are free to withdraw your participation at any time without penalty.
1. What is your age? ___________ years

2. What is your gender? [] Male [] Female [] Non-Binary [] Prefer not to say

3. With which race do you primarily identify? (please mark ONE box)
 [] American Indian or Alaska Native [] Native Hawaiian or other Pacific Islander
 [] Asian [] White
 [] Black or African American [] Some other race
 [] Hispanic, Latino, or Spanish origin

4. What was your total income over the past 12 months?
 [] Less than $10,000 [] $10,000 – $29,999 [] $30,000 – $49,999
 [] $50,000 – $69,999 [] $70,000 – $89,999 [] Greater than $150,000

5. What is your primary method of transportation to and from places (i.e., home to work, school, the store, errands)? (please choose one)
 [] Automobile [] Public transit (bus) [] Motorcycle/Motorized scooter
 [] Bicycle [] Walking/by foot

6. Please consider the factors listed below and choose the answer that best applies to how you feel about the current walking or biking/travel infrastructure in the Las Vegas metro area.

<table>
<thead>
<tr>
<th>I feel that:</th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posted vehicle speed is appropriate for pedestrians/bikers to remain safe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is an adequate amount of signage and pavement markings to remind drivers to be aware of and courteous to pedestrians and bikers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drivers abide by the current laws and regulations in places which are intended to keep pedestrians and bikers safe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The likelihood of a conflict/collision between a vehicle and a pedestrian or biker is low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The likelihood of a conflict/collision between a bus and a pedestrian or a biker is low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional infrastructure or technology is required to improve pedestrian and bicycle safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distracted pedestrians could also be part of the issue (texting and crossing the street)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. What are your safety concerns about walking or biking for transportation (check all that apply)?

_____ Motorists, distracted driving
_____ Conflicts or collisions with other cyclists
_____ Too many cars/trucks
_____ Speed of cars
_____ Conflicts or collision with cars/trucks
_____ Conflicts or collisions with pedestrians
_____ Other __
_____ I have no safety concerns

8. How often do you:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Very often</th>
<th>Often</th>
<th>Rarely</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text and drive?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talk and drive?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text and bike or walk?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talk and bike or walk?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive over the speed limit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaywalk?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Do you have experience with Demand Responsive Transverse Rumble Strips (DRTRS)?

- [] Yes
- [] No

10. I feel that the Demand-Responsive Transverse Rumble Strips are effective to alert drivers about the presence of pedestrians and bikers.
11. How the use of Demand Responsive Transverse Rumble strips would change your willingness to walk or bike in Las Vegas?
Increase □ Decrease □ No change □

12. What factors would result in you starting or increasing your level of walking or biking? (check all that apply)
_____ More bike lanes
_____ Bike lanes separated from vehicle traffic
_____ Showers and lockers at destination
_____ More people cycling or walking
_____ Lower cost than personal vehicle commuting
_____ Incentives from work or school (i.e.: discounted bus passes or monthly travel stipends)
_____ More information about where the bike lanes and paths are located
_____ More information about where I can access public transit (bus)
_____ More information about cost of bike and transit commuting compared to private vehicle commuting
_____ Demand-Responsive Transverse Rumble strips at crosswalks
_____ Other

__

__

13. Please list any specific investments or infrastructure changes that could be made which may result in you to walk or bike more in combination with using public transit for transportation.

__

__

__

__

14. What are your overall thoughts and concerns on the Demand-Responsive Transverse Rumble strips?

__

__
15. Are you willing to be contacted at a later date to provide more in-depth details of your ideas and opinions about the Demand Responsive Transverse Rumble strips? □ Yes □ No

If yes, please provide your name and contact information below.

Name: ___

Phone: _____________________________

Email: _____________________________
APPENDIX E
Field Test Methodology for the First Design of the Demand Responsive Transverse Rumble Strips at the University of Nevada Las Vegas
Description
The first Prototype design was tested for both states of the DRTRS – active and inactive – with a Ford F-250 truck to have the comparative data of noise and vibration. A list of 30 runs were performed with the testing vehicle over the DRTRS inclusively without any extra load and with 2500 lbs. of loads. Among which, 15 runs while the DRTRS was active, and the rest 15 were made when the DRTRS is inactive. The variables that were measured during the test are:

Noise
- Inside vehicle noises
- DRTRS noises
- Roadside noises

Vibrations
- Inside car vibrations
- DRTRS Vibrations

Speed

<table>
<thead>
<tr>
<th>Sound/ Noise (dB)</th>
<th>Inside Car Vibration (m/s²)</th>
<th>DRTRS Vibration (m/s²)</th>
<th>Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside vehicle</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>Outside</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

Methodology for the data collection

In-vehicle noises & vibrations
Smartphone was mounted vertically on a magnetic mobile clamp close to drivers’ steering. Consequently, that would provide more stability and would keep the phone fixed/ attached to the car. This system allowed us to get the actual vibration and noise data while vehicle ran over the DRTRS. The app recorded the noises in dB unit and the vibration in ms⁻² unit for every time stamp of 0.1 second. As the smartphone was vertically mounted, the conventional ‘y axis’ of the smartphone served as the ‘z axis’ with the gravitational acceleration of 9.8 ms⁻².
After mounting the smartphone with the dashboard, a list of 30 runs were performed with the FORD F-250 super duty trucks with 2500 lbs. extra loads and another 30 runs without extra load. The first 15 runs of 30 (run1 to run15) were performed when the DRTRS was inactive, and the rest 15 runs (run16 to run30) were executed when the device was active. The noise and vibration for each run were recorded using the android app AndroSensor (https://play.google.com/store/apps/details?id=com.fivasim.androsensor) and were stored in the CSV format. Note that, 30 runs were performed around the speed of 25 mph.

Roadside noises

‘Single vehicle pass by method’ was used to collect the roadside noise data. Smartphone was mounted at 5 feet height on a tripod and 10 feet away from the edge of the DRTRS. The microphone was faced to the perpendicular direction of the DRTRS to attenuate the unwanted noises from other sources, e.g. traffic noises from the Flamingo road.

Smartphone has been placed on a tripod to get the roadside noise data generated by the truck while running over the DRTRS. The tripod was placed at 10 feet away from the DRTRS, and the smartphone was mounted at five feet above the ground.
DRTRS Noise and Vibrations

A smartphone was fixed with the DRTRS using the magnet that essentially yielded a steady sensor reading. Note that, the data recorded through this procedure is the true noise and vibrations of DRTRS while vehicles run over it.

![Figure 3: Noise and vibration data collection from the DRTRS](source: Field data, 2018)

X axis works here as the lateral dispersion of the DRTRS, y axis as the longitudinal ones and z axis records the vertical vibration including the gravitational unit of 9.8 ms⁻².